NCPLUS V2.00 NDS

NetWare Console Plus

USER

MANUAL

NCPLUSCARSPECIAUX 226 \f "Symbol"
Version 2.00 NDSCARSPECIAUX 226 \f "Symbol"
NetWare Console Plus

Forbidden duplicate without authorization of

NAZART CONSEIL INFORMATIQUE CARSPECIAUX 226 \f "Symbol"
17, Bd de la Chesnardière

F-35300 FOUGERES

No part of this publication shall be reproduced, stored in a retrieval system or transmitted by any means, electronic, mechanical, photocopying, recording or otherwise, without the express written consent of he publisher.

No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this publication, the publisher assume no responsibility for errors or omissions. Neither is any liability assumed for damages assumed for damages resulting from the use of the information contained herein.

NCPLUS, NCL et KEYPLAY (C-LAN 1996.

NCPLUS, KEYPLAY, NSH et NCLIB (All rights Reserved by NCI 1992-1997

NCI and NAZART CONSEIL INFORMATIQUE (1989-1997 and (1989

By NAZART CONSEIL INFORMATIQUE S.A.R.L.

NOVELL, NetWare, are trademarks of Novell, Inc.

All brand and product names are trademarks or registered trademarks of their respective holders.

TABLE OF CONTENTS

4TABLE OF CONTENTS

I. INTRODUCTION
11
I.1. WHO THIS MANUAL IS FOR ?
11
I.2. NOTATION CONVENTIONS
11
II. USING NCPLUS WITH NETWARE 4
14
III. NCPLUS OVERVIEW.
19
III.1. NCPLUS SHELLS
20
III.2. OTHER NCPLUS PROCESSES: DAEMONS.
23
III.3. SHELL HANDICAP AND LOAD FACTOR.
24
III.4. NCPLUS LANGUAGE: COMMANDS AND KEYWORDS.
25
III.5. SYSTEM AND LOCAL VARIABLES.
29
III.6. SPECIAL CHARACTERS AND OPERATORS.
31
III.7. USING THE SLASH '/' and BACKSLASH '\' CHARACTERS.
32
III.8. LOGIC AND ARITHMETIC MODES.
32
III.9. COMMAND OUTPUT SUBSTITUTION MODE.
34
IV. FIRST STEPS WITH NCPLUS.
37
IV.1. ADDITIONAL INSTALLATION PARAMETERS.
37
IV.2. UPDATING NSH.INI.
38
IV.2.a. [Console Command List] SECTION.
40
IV.2.b [Misc Params] SECTION.
40
IV.2.c. [Initialization] SECTION.
43
IV.2.d. [CleanUp] SECTION.
44
IV.3. LOADING NCPLUS FOR THE FIRST TIME.
45
IV.4. NSH KEYBOARD AND FUNCTION KEYS.
46
IV.5. WHAT'S RUNNING? THE PS COMMAND.
47
IV.6. WHERE AM I ? DIR, MAP AND CD COMMANDS.
48
IV.7. WHO'S the PILOT here ? CX and login commands.
51
IV.8. CREATING MULTIPLE SHELLS.
54
IV.8.a. SUBSHELLS.
54
IV.8.b. BACKGROUND (INDEPENDENT) SHELLS.
55
IV.8.c. WHY 3 PIDS TO RUN 2 INTERACTIVE SHELLS ?
56
IV.9. BACKGROUND COMMANDS.
57
IV.10. DESTROYING A BACKGROUND COMMAND OR SHELL.
57
IV.11. RUNNING BATCH PROGRAMS.
59
IV.12. COMPILING A BATCH FILE.
61
IV.13. USING CTRL+C AND CTRL+Z.
62
IV.14. DUPLICATING NETWARE CONSOLE MESSAGES.
63
IV.15. USING NETWARE CONSOLE COMMANDS WITH NCPLUS.
65
IV.16. STOPPING AND UNLOADING NCPLUS.
66
V. NCPLUS VARIABLES.
68
V.1. USER LOCAL VARIABLES.
68
V.2. GLOBAL SYSTEM VARIABLES.
70
V.3. SHELL LOCAL VARIABLES.
73
V.3. "PATH" USER VARIABLE.
74
V.4. "PROMPT" USER VARIABLE.
74
VI. NCPLUS LANGUAGE SYNTAX.
76
VI.1 GENERAL SIMPLE COMMAND FORMAT.
76
VI.2. PIPELINE.
77
VI.3. GENERAL COMMAND LIST FORMAT.
78
VI.4. {} COMMAND LIST ALTERNATE FORMAT.
78
VI.5. KEYWORDS, STATEMENTS AND INSTRUCTIONS.
79
VI.6. IF THEN ELSE FI STATEMENT.
80
VI.7. THE ? : TEST NOTATION.
82
VI.8. WHILE DO DONE STATEMENT.
83
VI.9. FOR IN DO DONE STATEMENT.
85
VI.10. SWITCH CASE STATEMENT.
86
VI.11. BREAK INSTRUCTION.
87
VI.12. CONTINUE INSTRUCTION.
88
VI.13. EXIT INSTRUCTION.
89
VI.14. SPECIAL CHARACTERS AND OPERATORS.
90
VI.15. BUILDING WORDS.
92
VI.16. USER VARIABLES AND THE '=' INSTRUCTION.
93
VI.17. COMMAND INPUT/OUTPUT REDIRECTION.
94
VI.17.a NETWARE CONSOLE COMMAND REDIRECTION.
95
VI.17.b. USING '>>' IN LOOP STATEMENTS.
95
VI.17.c. BATCH FILE REDIRECTION.
96
VI.17.d. REDIRECTING OUTPUT TO THE NUL DEVICE.
96
VI.18. ARITHMETIC/LOGIC SUBSTITUTION.
96
VI.19. COMMAND OUTPUT SUBSTITUTION.
101
VI.20. SPECIAL 'WHEN' PARAMETER.
102
VII. NCPLUS INTERNAL COMMANDS.
105
ACCEPT
106
BEEP
107
CD
108
CHOWN
110
CLS
112
CMDLIST
113
COMPILE
114
CONSOLE
116
COPY
118
CTRL
120
CURSOR
122
CX
123
DEBUG
125
DEC
126
DEL
127
DIR
129
ECHO
132
ECHOXY
134
EXIST
136
FEXT
139
FLAG
140
FNAME
143
GETKEY
144
GO
146
HEX
147
KEYPLAY
148
KILL
150
LEFT
151
LOCK
153
LOGIN
155
LOGOUT
157
LOWER
159
MAP
160
MD
162
MID
163
MORE
165
NCLDOWN
166
NHELP
167
NLMLIST
169
NOEXIST
170
NSET
173
NSH
174
PAUSE
177
PIDINFO
178
PRINT
180
PROTECT
182
PRTY
185
PS
187
PURGE
189
RD
190
REN
191
RIGHT
192
RIGHTS
193
SCHEDULE
195
SCREEN
200
SEND
204
SEQ
205
SETPASS
207
SIZEOF
208
STAT
209
SYNC
211
SYSINFO
214
TEST
215
TLIST
217
TMPDIR
218
TRAP
220
TRUE
225
TYPE
226
UPPER
227
USERLIST
228
VOLINFO
229
WAIT
230
WHOAMI
231
WORD
232
XDEL
234
YESNO
236
VIII. USING THE PLAYER DAEMON WITH KEYPLAY.
238
VIII.1. KEYPLAY SCRIPT VARIABLES.
239
#COORD_MSG
241
#COORD_WIN
242
#DEBUG
243
#LOG_FILE
244
#SPEED
245
#SWITCH
246
#TIMEOUT_MSG
248
#TIMEOUT_SCREEN
249
#TIMEOUT_WIN
250
VIII.2. USING NCPLUS VARIABLES IN KEYPLAY SCRIPTS.
251
VIII.3. KEYPLAY SCRIPT COMMANDS.
251
#CONSOLE
253
#COPY
254
#GOTO
255
#IF_MSG [#ELSE] #ENDIF
257
IF_WIN [#ELSE] #ENDIF
259
#LOG
261
#REM
262
#SCREEN
263
#SLEEP
264
#STATUS
265
#STOP
266
#UNTIL_MSG
267
#UNTIL_WIN
268
#WAIT_MSG
269
#WAIT_SCREEN
270
#WAIT_WIN
271
VIII.4. NON PRINTABLE CHARACTERS SYMBOLS.
272
VIII.4.1. SPECIAL KEY SYMBOLS.
272
VIII.4.2 'CTRL', 'SHIFT' and 'ALT' COMBINATIONS.
273
VIII.5. KEYPLAY RETURN CODES.
274
IX. ACCESSING THE SERVER DOS PARTITION.
276

I. INTRODUCTION

Welcome to NCPLUS! We'd like to thank you for choosing NCPLUS to manage your NetWare servers. This software is designed for NetWare administrators who want to use efficiently their servers 'horsepower'. It allows you to run and execute simple commands as well as sophisticated procedures (batch files) on your servers. Before NCPLUS, most of the daily network administration and management tasks had to be done from a workstation. Now, NCPLUS lets you manage your network directly from the server keyboard.

You don't need to be a programmer to use NCPLUS. Based on the DOS COMMAND.COM and the UNIX shell concepts, NCPLUS adds more than 70 new commands to the NetWare server console. These simple commands are close (and sometimes identical) to what you already use on your workstations to access your network resources and information: files, printers, users, etc. When you type a NCPLUS command on the server console, NCPLUS will execute it immediately. You may also combine several commands (including 'native' NetWare commands) in batch files (NCF) to be executed by NCPLUS.

I.1. WHO THIS MANUAL IS FOR ?

This manual is intended for NetWare administrators using NCPLUS. It does not cover NetWare details. Readers should have already a good experience with NetWare workstation utilities, a practical knowledge of NetWare 4.x server installation and customization, including NetWare Directory Services.

This manual may be used as a reference document. Most of its contents is also available in the on-line help documentation. All NCPLUS commands have a '/?' parameter you can use to get instant access to help. However, we recommend to read the first chapters of this manual before using NCPLUS. By reading this document, you will get more information on some NCPLUS concepts. Several step-by-step examples will also help you understand important details and advanced features of NCPLUS.

I.2. NOTATION CONVENTIONS

This manual uses the following conventions:

Command examples are included in boxes.
Characters generated by NCPLUS are shown in 'Courier New'. Boldface characters indicates keywords, commands and parameters entered by the user.
 [0] F:\> dir /w <cr>
'[0] F:\>' is displayed by NCPLUS. 'dir /w' corresponds to what has been typed by the user. '<cr>' replaces the ENTER or CR key.

Control and non printable characters are replaced by special symbols:

Symbol
Corresponding Keystrokes

<cr>
Return (or Enter on some keyboards)

ESC

Escape

CTRL+C or <ctrl+c>
CTRL and C pressed simultaneously

CTRL+Z or <ctrl+z>
CTRL and Z pressed simultaneously

ALT+ESC
ALT and ESC pressed simultaneously

CTRL+ESC
CTRL and ESC pressed simultaneously

F1 to F10
Function Keys F1 to F10

Some NCPLUS commands display color messages. In this manual, color messages are shown in italics.

 [0] F:\> name <cr>
This is server MAIN
We hope NCPLUS will help you in your daily network management. Many commands and features of NCPLUS have been designed to provide what network users like you reported us missing in the NetWare server environment. Should you wish to have additional commands included in NCPLUS, feel free to contact us, or use the 'Comments and Suggestions' form of this package to let us know what you need. We will carefully study all suggestions and evaluate how there can be included in a new release of NCPLUS.

II. USING NCPLUS WITH NETWARE 4

NetWare 4 (or IntranetWare) is the most recent version of Novell's network operating system (NOS). It's the first network operating system offering a global, hierarchical, network wide, distributed directory system called 'NetWare Directory Services' (NDS). NDS contains information on all resources and services available on the network. Using NDS, a network user needs to login only once to the network, and no longer to each server on which he wants to work. Authentication is global to the network.

NetWare 4 is not a new version of NetWare 3 (v3.12), but a complete new operating system. Although fully compatible with NetWare 3.x, many internal algorithms and routines have been re-written for better performance and new services have been implemented. NetWare Directory Services is not the only new feature of NetWare 4: Disk block sub-allocation, data compression and migration, multi-processor support (SMP) are other new services provided with NetWare 4. Refer to your Novell documentation to get more information on NetWare and IntranetWare.

In a NetWare environment, most of the network administration is done from a workstation. Novell utilities like NWADMIN, FILER, LOGIN, MAP, NLIST, NDIR, PCONSOLE, etc. allow the administrator to manage users, files, printers, NDS information from a DOS or Windows workstation. These commands can be grouped and combined in batch (BAT) files along with DOS commands like COPY, CD, DIR, DEL, etc. to build more complex tasks or 'batch programs'. On a Windows, Windows NT or OS/2 workstation, several batch files can run concurrently.

Many network administrators use the batch facilities of their workstations to execute daily administrative tasks like:

- backup and file copies,

- cleanup, file and directory update and deletion,

- statistics,

- printing reports,

- etc.

Most of the workstation operating systems have special batch keywords like GOTO, IF and local variables to allow sophisticated batch files to be written.

When administrative tasks require access to the file server console to execute 'console commands', network administrators must use RCONSOLE client utility or go to the server to manually enter the console commands at the console keyboard. Access to the server console is required for tasks such as:

- loading and unloading nlms to start a backup or stop a database,

- mounting, dismounting volumes,

- start/stop a network protocol,

- install or update new options or features to the server.

LOAD, UNLOAD, DOWN, BIND, MOUNT and DISMOUNT are some of the server console commands. These commands can also be grouped in batch files (NCF), but only console command are allowed in such files. And NCF batch files can be executed at the server console only.

NetWare does not offer an easy way to create batch files or 'batch programs' allowing the network administrator to combine workstation and console commands in the same file(s). Using a 'workstation only' environment would require the workstation to be logged in all servers to be accessed and would not allow execution of console commands. When executing unattended tasks (like batch programs run at night), it may also represent a potential security breach.

Using a native 'server only' environment would limit the tasks to the NetWare console command set: there is no way to access files, NDS and printer information from a NetWare server console. NCF files cannot be run under NDS security restrictions. Statements like IF THEN ELSE, WHILE do not exist in the console command set, and you can't create variables.

We have designed NCPLUS to offer an answer to these problems. By enhancing the server console, NCPLUS combines the ease of use of a familiar workstation environment like DOS with the power of the NetWare operating system. NCPLUS creates a real 'shell' environment on NetWare servers. This approach offers several advantages:

- Ease of use: all NCPLUS commands may be run interactively at the server console prompt. No programming is necessary. Most of the commands are similar to what is found on NetWare DOS workstations.

- Better command set and complete scripting language. Servers running NCPLUS can execute sophisticated procedures, using variables, conditional, arithmetic and logic operators and keywords.

- Performance: NetWare multi-tasking and scheduling facilities are tightly integrated into NCPLUS, allowing several commands or batch files to be run simultaneously, at different priority levels.

- Better usage of the server: Servers may now be used for administrative tasks like file and print management, cleanup, backup, etc.

- Lower network traffic: file and print operations may be run directly on the servers, avoiding unnecessary traffic to workstations.

- Better security. Complex batch procedures may be executed on servers. Logged in workstations left unattended are no longer needed.

- NDS control. Any command executed on servers using NCPLUS can be run under NDS security, using trustee rights granted by the network administrator.

- Direct server to server file transfer. A workstation is no longer necessary to transfer files from one server to another.

NCPLUS has more features than any other scripting language available today on NetWare. Although highly sophisticated scripts may be written with NCPLUS, it is also an interactive shell environment with more than 70 new easy-to-use commands. No training or programming is necessary to use NCPLUS. The main features of NCPLUS are:

- DOS like file management commands at the server console: dir, copy, del, md, rd, ren, etc., running both on NetWare volumes and the server DOS partition.

- Network commands: login (NDS), logout, cx, map, flag, chown, whoami, userlist, purge...

- All commands can access local data (on the local server) and remote data (on remote servers).

- Scripting language: keywords like for, if, then, else, while, break, continue, as well as arithmetic and logic operators can be used to build powerful scripts.

- Built-in scheduler (cron like) to execute commands or scripts at specific dates, time, period or frequency.

- Command input/output redirection to files (using >, < and >> operators).

- Command piping and filtering (using the | operator).

- Access to native (built-in) NetWare console commands from NCPLUS.

- User variables.

- Additional system variables (NDS, file, volume, server and time information)

- Network and server events capture facilities.

- Built-in print facility.

- Access to other nlms screen(s) for test or hardcopy.

- Keystroke player, allowing automatic, unattended control and execution of any nlm.

- Password protection of the server console (MONITOR no longer needed).

- Compile any NCF batch file.

- Multi-tasking: up to 64 commands run simultaneously.

- Semaphore synchronization between commands and procedures.

- Different priority and/or handicap level for each command or procedure.

NOTE: NCPLUS offers many features and concepts also found in the DOS and the UNIX shells. NCPLUS has been designed to enhance the NetWare server environment, not to transform a NetWare server into a DOS or UNIX system. You cannot run DOS and/or UNIX applications on a server using NCPLUS.

NCPLUS v2.0 runs on NetWare 4.1 and above (including IntranetWare). It does not run on NetWare 3.x. There are three good reasons for that:

- NetWare 3.x NLMs cannot access NetWare Directory Services

- The NetWare 4 operating system has new services and features not available on NetWare 3.

- NetWare 4 API set is not fully supported on NetWare 3, and sometimes different.

Designing NCPLUS to run on NetWare 3 and 4 would actually reduce its features down to the services supported by both platforms only. However, previous versions of NCPLUS (v1.x) run on NetWare 3.x. Contact your dealer for more information.

III. NCPLUS OVERVIEW.

This chapter presents the NCPLUS architecture and some elements of its syntax.

NCPLUS is a set of 2 NLMs: NCLIB.NLM and NSH.NLM. NCLIB.NLM contains the code and data corresponding to the commands, internal functions and tables of NCPLUS. NSH.NLM is the interpreter, or 'shell'. Both nlms are necessary to run NCPLUS.

NCLIB.NLM is equivalent to a library or dll (Dynamic Loadable Library). It handles the communication between NetWare services provided by Novell CLIB.NLM (or the new 'modular' CLIB) and the NSH.NLM shell.

Fig. 1: NCPLUS v2.00 architecture

When both NCLIB and NSH are loaded, a new 'virtual' screen is created on the NetWare console. This new screen is called "NSH Main Screen". It corresponds to the FIRST NCPLUS shell's screen.

Eventually, (when specified in the NSH.INI file), a second screen will be created, corresponding to the NCPLUS built-in scheduler task (daemon). This screen is called "NSH Scheduler Screen".

On a NetWare server console, you can switch from one screen to another by pressing the ALT and ESC keys simultaneously. You may also use the CTRL + ESC keys to get a list of the currently available screens. The "System Console" screen is always present. It corresponds to the native NetWare console command interpreter, and it cannot be removed or unloaded.

Fig. 2: The 3 screens available after loading NCPLUS v2.00

III.1. NCPLUS SHELLS

The first NSH.NLM screen ("NSH Main Screen") is the FIRST NSH shell screen. You may create up to 64 different shells with NCPLUS, each having a different screen.

When the first interactive shell prompt is displayed, users may start to enter any NCPLUS command, 'native' NetWare console command, or batch file (scripts) commands.

The first shell is called "primary shell" or "PID 0". Each shell running in the NCPLUS environment has a unique identifier called PID (Process ID).

NSH handles up to 64 PIDs, numbered from 0 to 63. Each PID may correspond to:

- an 'independent' shell, running with its own virtual screen and keyboard in background. Such shells are started with the 'nsh &' command.

- a script (NCF file) or command list, run in 'background mode'. Background commands are started with the '&' special character.

- a script (NCF file) or command list started by the NCPLUS scheduler,

- a 'subshell'. In that case, the new shell uses the virtual screen and keyboard of the shell which started it with the 'nsh' command.

There is a 'parent-child' relation between all shells existing at one time. Starting from PID 1, all shells are children or grand-children of the first (PID 0) shell, or children or grand-children of the NCPLUS scheduler.

There are 2 types of child shells:

- 'subshells'

- 'independent' shells.

A subshell is created when a script (batch file) is started from the command line of a given shell. The subshell uses its parent screen while executing the script. While the subshell is running, the 'parent' shell is suspended. Once the script is terminated, the subshell 'dies' and control returns to the parent shell.

Figure 3 shows an example of a subshell. On the PID 0 shell screen, a user enters the 'BATCH' command, corresponding to a script filename (BATCH.NCF). When PID 0 has detected 'BATCH' to be an external command, it creates a new subshell (PID 1), and suspends itself. Control is passed to the subshell PID 1. PID 1 shell reads the file and execute the commands. When PID 1 shell detects the end of file for BATCH.NCF, it stops and 'dies' immediately. Control is returned to the parent shell (PID 0).

Fig. 3: Example of a subshell.

While BATCH.NCF is executed by PID 1 subshell, PID 0 parent shell is suspended. PID 1 uses PID 0 virtual screen and keyboard.

Control returns to parent shell (PID 0) upon batch file termination.

An independent shell is created when a command is followed by the '&' symbol. The '&' symbol tells the current shell to start a new, independent shell in background, to execute the command specified before '&'. A new virtual screen/keyboard is created for the new shell, and the current shell is not suspended.

Figure 4 shows an example of an independent shell. On the PID 0 shell screen, a user enters the 'COPY F:*.* G: /S &' command, which is an internal NCPLUS command. PID 0 shell detects the '&' symbol and creates a new child shell with its own screen and keyboard. PID 0 shell then displays the PID number of the newly created shell (PID 1) and waits for new user input. It does not stop.

Meanwhile, the new PID 1 independent child shell executes the copy command. Once the copy is terminated, its virtual screen is destroyed, and the shell dies (removed from the shell run list).

 Using the '&' symbol, you may also create a new interactive shell on another screen. The 'nsh &' command will create an independent shell waiting for user input on its own screen/keyboard. This new shell will inherit its parent variables and drives.

The '&' syntax to start background commands comes from the UNIX shell (sh) environment. Similarly, NCPLUS has a 'ps' (Process Status) command allowing the user to get a list of all NCPLUS shells or commands running at one time. The ps command will display the PID #, priority, start time and name of each running shell or command.

III.2. OTHER NCPLUS PROCESSES: DAEMONS.

NetWare is a multi-tasking, multi-thread network operating system. In order to use its powerful features (i.e. running multiple shells concurrently), NCPLUS must control several parameters like shell synchronization, duplication of messages from the NetWare console screen to the NCPLUS screen, etc. Other NCPLUS commands, like the scheduler or the keystroke player, require special purpose tasks to run in background. Such tasks are called 'daemons'. There do not correspond to user programs and therefore are not treated like NCPLUS shells with a PID and a virtual screen. NCPLUS daemons, running in background, are started and stopped with special commands. There is also another NCPLUS daemon (HeartBeat) that cannot be stopped by the user (unless NCPLUS is unloaded). Daemons do not appear in the NCPLUS shell list (see 'ps' command).

There are 4 NCPLUS daemons: 'HeartBeat', 'Message', 'Scheduler' and 'Player'.

HeartBeat is the 'heart' of NCPLUS. This special thread controls all other NCPLUS threads (including the shells) and handles resource synchronization. It cannot be stopped. HeartBeat is scheduled regularly by NetWare. Its scheduling frequency may be modified by the NCPLUS user (should be considered only under special circumstances). The code of 'HeartBeat' has been written to have a very low impact on the server performance, and to use a minimum CPU time (less than 0.1%).

The "Message" daemon handles the automatic screen messages duplication from the NetWare console screen ('System Console Screen') to 'NSH Main Screen' of NCPLUS (corresponding to PID 0 shell). All messages displayed or generated on the native NetWare console screen will be immediately re-displayed on the NCPLUS first shell screen. It avoids switching regularly between NCPLUS and the NetWare Console screens to check for new messages. Starting the 'Message' daemon lets the NCPLUS user enter a native NetWare console command on the NCPLUS screen and get the result on the same screen. To differentiate NetWare messages from NCPLUS messages, NetWare messages are displayed using another color (default is red). 'Message' has a insignificant impact on the server performance (runs only when new messages appear). It can be stopped and started at any time.

The "Scheduler" daemon comes from the UNIX "cron" daemon concept. It runs once every minute and allows NCPLUS, NetWare commands and batch files to be started at any given time, date, or frequency. Commands or batch files to be scheduled by this daemon are put in a list by the 'schedule add' command. Every minute, the Scheduler daemon read the list. When the time/period condition is met for a command in the list, Scheduler starts a new independent shell that will execute the command. An optional screen may be created to display the list of commands started by Scheduler. The same information can also be saved in a log file.

Finally, the "Player daemon" is a thread started by the 'keyplay' command. Player reads a script file containing keystroke sequences and plays back the keystrokes on the server console. It allows any key combination to be played on any screen of any nlm. The script file may also contain special keywords for screen selection, execution speed control, screen testing and conditional execution. The Player daemon stops when the file is entirely read, or when user stops it with the corresponding command.

III.3. SHELL HANDICAP AND LOAD FACTOR.

NetWare is a non-preemptive operating system. It means that when a thread takes control of the CPU (i.e. thread runs), no other thread can take control of the CPU, unless the current thread is suspended (i.e. waiting for an event or device), yields or dies. Only one thread runs at one time, the other threads are put in special waiting queues. This technique allows very fast thread switching and an efficient use of the server CPU, but requires threads to be short, yielding as soon as there don't need to run.

In NetWare there is not a 'user' and 'kernel' mode. All threads have the same access to the CPU. Threads corresponding to the NetWare operating system and threads generated by other nlms like NCPLUS are treated the same way. Extra care must be taken to avoid one thread to take control of the CPU for a 'long' period of time. In order to obtain a high level of performance, all threads (NetWare and others) must have equal access to the CPU. NCPLUS has been carefully designed to fit in this model. Adding new features to a NetWare server would not be a good investment if the added options had a heavy impact on the server performance expected by network users. However, there are periods of time (i.e. off peak hours or night) when server performance is not an issue, as no users are waiting for server data or services.

The 'prty' (priority) NCPLUS command lets the network administrator decide how much CPU NCPLUS is allowed to use. 'Prty' updates the 'handicap' and the 'load factor' of any NCPLUS shell. 'Handicap' corresponds to a number of threadswitches a given NCPLUS shell will have to wait before it can go back in the run queue every time it yields. It does not slow down NCPLUS, but gives more chance to other threads to run. On the opposite, the 'load factor' has a strong impact on NCPLUS shell speed. It corresponds to a number of milliseconds. Periodically, a NCPLUS shell will suspend itself for the given load factor value. While suspended, NCPLUS does not use at all the server CPU, and other threads can run more often. Using a combination of the 2 factors, it is easy to write a small NCPLUS script that will slow down NCPLUS during 'business hours' and switch back to full power during night hours, when NCPLUS is used for heavy duty batch processing.

III.4. NCPLUS LANGUAGE: COMMANDS AND KEYWORDS.

NCPLUS is a command interpreter. It can be used interactively, by typing any command on one of its screens. Most of the DOS file commands and NetWare commands are available with NCPLUS.

You may type commands like 'COPY A:*.* F: /S', 'DIR G:*.NCF', 'LOGIN .acme.admin', 'MAP G:=VOL1:DATA/BACKUP' at the NCPLUS prompt. More than 70 new commands are provided. As soon as the NSH prompt is displayed, you can type these command and their parameters, followed by a return ('CR' or 'Enter' key).

COMMANDS are verbs corresponding to an action on files, printers, resources, network connections, NDS, drives, and any kind of data in general. Commands have parameters, mandatory or optional. Commands can be written in lower or uppercase.

KEYWORDS are special words in the NCPLUS syntax. There are used to combine, group, repeat and test commands, and/or to modify the sequential execution of a batch file. NCPLUS keywords allow you to create real programs (also called 'procedures'). The NCPLUS keywords are: IF, THEN, ELSE, FI, FOR, IN, WHILE, DO, DONE, EXIT, BREAK, CONTINUE, SWITCH, CASE and DEFAULT. There can be written in lower or uppercase. Keywords are meaningful to NCPLUS according to their position in a command or command list. Therefore, you can create batch files using keyword names.

Like commands, keywords may be used interactively or stored in batch files.

NCPLUS commands are 'INTERNAL' commands. There are built-in the NCPLUS code. When you type a native NCPLUS command, no other nlm or file is loaded.

You can also group several NCPLUS (and NetWare) commands in a text file using the 'NCF' extension, and use the file name as a new command name. In this case, the new command is an 'EXTERNAL' or 'BATCH' command. When you type the file name, NCPLUS reads the file and execute the commands stored in it. Executing a batch or external command requires NCPLUS to create automatically a new 'child' shell to read and run it, just like DOS loads a new COMMAND.COM to execute a BAT file.

A powerful NCPLUS feature is its built-in 'compiler'. The 'compile' command creates a '.NCL' file from a '.NCF' file. NCL files are treated by NCPLUS just like INTERNAL commands. There do not require a new shell to be created for their execution. A '.NCL' file contains ready-to-run instructions for the NCPLUS interpreter. Command syntax has already been checked, and it takes less time to load a NCL file than a NCF file. Another advantage is that NCL files are encrypted, and nobody can read their contents. Commands using confidential parameters (like passwords) can easily be compiled in NCL format to guarantee a higher security level.

NOTE: NCPLUS will check a command name in the following sequence:

1) Internal (native) command.

2) NCL (compiled) batch file in the current directory.

3) NCL (compiled) batch file in one of the PATH directories.

4) NCF batch file in the current directory.

5) NCF batch file in one of the PATH directories.

If the entered command does not match one of these formats, it will be rejected (unknown command).

When a batch file exists in its source (NCF) and compiled (NCL) form in the same directory, the compiled version will be always executed. However, you can specify the file extension in the command name (i.e. 'XYZ.NCF' instead of 'XYZ') to force NCPLUS to execute the source version of the file. Similarly (although not recommended for clarity!), you can create batch files using the same name than NCPLUS internal commands. In this case you MUST specify the extension on the command line (i.e. 'DIR.NCL' or 'DIR.NCF' instead of 'DIR').

All NCPLUS commands must start at the beginning of a new line, or right after a semicolon (';'). The semicolon is used by NCPLUS to separate 2 commands typed on the same line. The last command on a line must be terminated by a carriage return (CR, or 'Enter' key).

All NCPLUS commands return an error code. This error code can be tested to check if the command was successful

A successful command always return 0 (TRUE). Any other value (FALSE) indicates a problem or corresponds to a command specific code. The 'exit' keyword allows you to create batch (NCF or NCL) files returning a code to its caller.

Note for C programmers: Unlike C, NCPLUS uses 0 for the logical TRUE value, and any other number for the logical FALSE value. This inversion allows commands or batch files to return different return and/or error codes, while 0 always mean OK or CORRECT.

A negative (<0) return code corresponds usually to a serious problem. During batch file execution (source or compiled) a command generating a negative return code will break (stop) execution of the file.

The return code of the last executed command or batch file is stored in the '%?' variable of a shell. (see 'Variables').

Commands and keywords are delimited by separators like space or tab characters. Other special characters, like ; () [] etc. are used by NCPLUS (see NCPLUS Syntax).

if test (%TIME > "18:00:00"); then echo "It's too late"; else echo "Not yet"; fi
for i in 5 4 3 2 1 0; do wait 1; echo %i; done
a=0;while test (%a < 1000);do echo ((%a+6)/3*2);a=(%a++);done

These 'statements' may be also written like below:

if test (%TIME > "18:00:00")

then echo "It's too late"
else

echo "Not yet"
fi
for i in 4 5 3 2 1 0

do

wait 1

echo %o

done
a=0
while test (%a < 1000)

do

echo ((%a+6)/3*2)

a=(%a++)

done

In the second example, you will notice that semicolons have been replaced by simple carriage returns. You may also write a mix of the two notations:

if test (%TIME > "18:00:00")

then echo "It's too late";else echo "Not yet"; fi
a=0; while test (%a <1000); do

echo ((%a+6)/3*2); a=(%a++)
done

When you use such a syntax at the NCPLUS keyboard, the current prompt will be replaced by the '>' character until a complete and valid statement is terminated by a final carriage return (after 'fi' for first example, after 'done' for second example).

III.5. SYSTEM AND LOCAL VARIABLES.

NCPLUS creates an environment containing two variables types: System variables and local variables. NCPLUS variables are distinct from NetWare variables.

System variables are 'read only' shared variables common to all NCPLUS shells. There can be read, displayed and tested by all running shells. System variables contain information like time, date, server name, volume statistics, user name, etc. The content of a system variable is updated each time a command reads it. System variables names are always in uppercase.

Local variables are 'read write' private variables. Each shell has its own set of local variables. Local variables are created by the NCPLUS user with the '=' sign. Some local variables have a special meaning for NCPLUS ('PROMPT' and 'PATH'). Other 'single-char' local variables are read only, like (%0 - %9, etc.).

Local variable names must begin with a letter, followed by 0 to n letters, digits or '_' characters. Local variables names may be uppercase or lowercase. NCPLUS will use 'ThisVar', 'THISvar' and 'ThIsVaR' as three distinct variables.

To create a variable, write the variable name followed immediately by the '=' sign and the desired value.

a=1
My_Very_Long_Variable="This is a string"
Name=%a
List=[dir *.* /N1]
File=%Server/%volume\FIC%a.txt
total=((%a+1*6)/3+1-95)

The above examples show some of the advanced features of NCPLUS, like:

- assigning a variable value to another variable: Name=%a,

- command output redirection to a variable: List=[dir *.* /N1],

- creation of a variable by concatenation of strings and other variable values: File=%Server/%volume\FIC%a.txt,

- arithmetic operations: total=((%a+1*6)/3+1-95).

System and local variables can be used as parameters of any command (including NetWare native console commands), logic and arithmetic operation, and even as a command name, preceding their name with the '%' sign.

echo %TIME %DATE
copy %FileList f:
a=dir; %a *.txt
if test (%total != 75)then echo "Wrong result!"
else echo "Right!" ; fi

You can also write the last example using the following notation

echo (%total != 75 ? "Wrong result!" : "Right!")

Each NCPLUS shell hold a set of special local read only variables:

%0 - %9
command line parameters

%*
full command line as entered by user

%#
number of words in the command line

%$
Shell number (PID)

%@
Parent shell number (PPID)

%?
Last executed command return code

%!
Last background shell PID started from the current shell

NCPLUS makes no difference between numeric and alphanumeric variables. Depending on the context and the operators, a variable value may be used as a number or as a string.

When a variable value contains only digits (optionally preceded by a '+' or '-' sign), the variable is considered as numeric in logic and arithmetic operations.

When the variable value contains at least a non numeric character, the variable is considered as alphanumeric. Arithmetic and logic operations are done on its lexical value.

NOTE: Word separators are important for NCPLUS. When an expression contains not separated strings and variables, NCPLUS will concatenate all the elements of the expression to build a new word.

server=SRV
ThisFile=FILE1
dst=FILE2
copy %server/SYS:%ThisFile.TXT %dst.bak

is equivalent to

copy SRV/SYS:FILE1.TXT FILE2.bak

and

myOu=production; myO=acme; myName=Paul
login .CN=%myName.OU=%myOu.O=myO

is equivalent to

login .CN=Paul.OU=production.o=acme

III.6. SPECIAL CHARACTERS AND OPERATORS.

NCPLUS uses special characters and operators to build expressions. Such characters cannot be used to create filenames, variable names or strings, except when there are protected by the NCPLUS escape character (~) or enclosed between double quotes.

NCPLUS special characters are: ! " # % & () ; { } [] `| ~ < > = plus the space and tab character.

Other characters have a special meaning only when entered in arithmetic or logic expressions delimited with parenthesis:

+ - * / ++ -- != == > >= && || < <= ? :

III.7. USING THE SLASH '/' and BACKSLASH '\' CHARACTERS.

Many operations handled by NCPLUS refer to server, volume and file names. For instance, a complete (full) NetWare path uses the following notation:

SERVER/VOLUME:DIRECTORY1\DIRECTORY2\FILENAME

Most of NCPLUS commands have optional flags like /P (pause on full page), /? (syntax help), /V (verbose), etc.

In order to differentiate between file paths and flags in a command parameter list, the following convention must be used:

- The backslash character '\' always refers to a file path,

- The slash character '/' is the command flag delimiter.

III.8. LOGIC AND ARITHMETIC MODES.

The NCPLUS command interpreter handles logic and arithmetic operations on the command line. Such operations can be used as command parameters, or in statements like IF THEN ELSE or WHILE.

Logic and arithmetic operations are delimited with parenthesis. When an operation is found in a command line, NCPLUS computes it and replaces the operation by the result. Operators are meaningful only when found between parenthesis.

b=1;c=2
a=%b+%c
will create the variable a containing "1+2", while
a=(%a+%c) will create the variable a containing "3".

Similarly,

dir > this
will create a file called "this" containing a list of filenames found in the current directory,while
a=(dir > this) will create the variable a containing "1" (FALSE) as the string "dir" is lexically less than "this".

Nested operations are allowed. Parenthesis can also be used to modify the operators precedence.

a=((8-2)*(34/2)+6-(15/3))
if test ((%a < 3 || %b > 6) && (%TIME == "18:00:00"));then echo yes;fi

Logic and arithmetic modes are mainly used for tests and math operations, but can also be used for any other purpose, like creating strings or even command names.

while true

do

wait (60*60)

BATCH(%TIME < "18:00:00")

done

The example above will start once every hour (60 secs * 60) a batch program called 'BATCH0.NCL' or 'BATCH0.NCF' if the current time is less than 6:00 PM and 'BATCH1.NCL' (or 'BATCH1.NCF') when time is greater than 6:00PM. (Note: It is much easier to use the built-in scheduler to execute an equivalent task).

a=0
for i in sys: vol1: vol2:

do

a=(%a++)

echo "List of files found on volume" %i > sys:\file%a
dir %i*.* /s >> sys:\file%a

done

The example above will create 3 files called file1, file2 and file3 containing respectively the list of files found on volume sys:, vol1: and vol2:

III.9. COMMAND OUTPUT SUBSTITUTION MODE.

Another NCPLUS powerful feature is the possibility to use any command output as a parameter of another command or as a string. The command output substitution mode is delimited by square brackets [].

a=[userlist /q]

This example will create a variable 'a' containing the list of users currently connected to the current server. Names will be separated by simple spaces.

for i in [dir *.txt /N1]

do

more %i

done

This other example will create a list of files with the TXT extension (dir /N1 option means 'display name only'). This list will replace the "[dir *.txt /N1]" expression in the command. For each instance of the 'for' loop, the variable 'i' will take as value the next filename in the list. In the loop, the 'i' variable is used as the argument of the 'more' command (like the DOS more command).

length=[sizeof "This string"]

This example will create a variable called length, containing "11". "11" is the output of the "sizeof" NCPLUS command. This command counts the number of characters found in its string argument.

a=0
for i in [dir *.* /S /FO /N1]

do

a=(%a++)

done
echo %a "files found on volume"

In this example, the for loop increments a variable "a". The loop will be executed as many times as there are files found by the command "dir *.* /S /N1". Actually the command "dir *.* /S /FO /CO" (Count Only, File Only) will do exactly the same:

echo [dir *.* /S /FO /CO] "files found on volume"
a="THIS IS AN UPPERCASE STRING"
b=[lower %a]

The second line of this example creates a variable "b" containing "this is an uppercase string".

NOTE: Command output substitution mode does some filtering on the regular command output. Whenever a command generates multiple lines and/or multiple words separated by more than one space or tab, all carriage returns are replaced by single spaces, and multiple spaces are reduced to one single space.

For example, assuming the command 'userlist /q' outputs 4 lines like:

User1
Paul
John
Gloria

Executing:

a=[userlist /q]

will create the variable a containing the string "User1 Paul John Gloria".

Like logic and arithmetic mode, nested command output substitution modes are allowed:

List=[dir [accept "Enter a filename: "] /N1]

In this example, NCPLUS will do the following:

1) Execute [accept "Enter a filename: "]. User enters a filename like "P*.EXE" and hits return.

2) This command is replaced by its output in the original command line:

List=[dir P*.EXE /N1]

3) Execute "[dir P*.EXE /N1]" and store its output in a temporary variable. The temporary variable is filtered (carriage returns replaced by spaces).

4) Create the variable "List", and assign to it the value of the temporary variable created in step 3.

NOTE: The NCPLUS 'CX' command (Change conteXt, equivalent to the NetWare DOS utility CX.EXE) can be used to change the current NDS context to "Root". To maintain compatibility with the DOS notation, NCPLUS accepts the "[Root]" notation, as long as "[Root]" is quoted.

CX "[Root]"

A single NCPLUS command can combine arithmetic, logic and command substitution modes. Nested expressions are also allowed.

a=([dir SYS:*.* /co /fo /s]+[dir VOL1:*.* /co /fo /s])
echo %a "files on this server"
#a contains the total of files found on sys: and vol1:

a=([dir *.* /so /fo /s] / [dir *.* /co /fo /s])
echo "Average filesize:" %a bytes
#/so: size only, /fo: file only, /co: count only.
#a contains the average size of files on current volume

IV. FIRST STEPS WITH NCPLUS.
This chapter provides basic information required by NetWare administrators to use NCPLUS. In this chapter, you will read about NCPLUS initialization parameters and basic commands. It also introduces you to the multi-tasking features of NCPLUS. Once you've read the paragraphs about the NSH.INI file, we recommend you to go to your server console with this manual, in order to load NCPLUS and try yourself all the examples.

NOTE 1: This chapter assumes NCPLUS is already installed with default options. To install NCPLUS license(s) on your NetWare server(s), refer to the INSTALLATION SUPPLEMENT booklet.

NOTE 2: NCPLUS users should have already a good practice of the NetWare environment and utilities, and some knowledge of the NetWare operating system. Refer to Novell documentation for more details on NetWare native commands and utilities.

IV.1. ADDITIONAL INSTALLATION PARAMETERS.

By default, the 2 NCPLUS nlms, NCLIB.NLM and NSH.NLM are installed in the SYS:SYSTEM directory of your server. Two additional files, NSH.INI and NSH.HLP are also copied in SYS:SYSTEM. It is possible to move the nlms and the other NCPLUS files to any other directory, as long as both nlms and the files are in the same directory.

We recommend to install NCPLUS nlms and files in a NetWare console 'SEARCH' directory. Refer to Novell documentation for the SEARCH, SEARCH ADD NetWare console command. Assuming you want to install or move NCPLUS files in the SYS:NCPLUS directory, you should add the following line to your server AUTOEXEC.NCF:

SEARCH ADD SYS:NCPLUS

To load automatically NCPLUS when the server starts, add the line

LOAD NSH

to AUTOEXEC.NCF (after the SEARCH ADD line). All other required nlms (CLIB.NLM etc.) will be also loaded.

IV.2. UPDATING NSH.INI.

NSH.INI is the NCPLUS initialization file. NSH.INI will let you initialize some commands and parameters of NCPLUS, start automatically batch programs and daemons, etc. You can however start NCPLUS without a NSH.INI file. When you update the NSH.INI file, you will have to unload NSH.NLM and NCLIB.NLM and load them again for your modifications to be taken.

NSH.INI is a text file. Its structure is close to what you can find in Windows or NT 'ini' files. It has 4 sections, delimited by the following strings:

[Console Command List]

[Misc Params]

[Initialization]

[Cleanup]

These strings are mandatory to start a section. Sections can be written in any order. All lines beginning with '#' are considered to be comment lines. You can also use the '#' sign to temporarily disable an option.

The default NSH.INI file looks like below:

[Console Command List]

abort=1

add=1

bind=1

broadcast=1

clear=1

cls is a NSH command. Use "!cls" for NetWare Console

cls=NO

config=1

...... other Native NetWare lines....

secure=1

send is a NSH command. Use "!send" for NetWare Console

send=NO

set=1

speed=1

spool=1

time=1

track=1

unbind=1

unload=1

version=1

volume=1

[Misc Params]

#Color 12: Red Foreground / Black background

Message Color=12

HeartBeat Pulse=400

StackSize=32768

Handicap=5

LoadFactor=0

DeathDelay=2000

DateFormat=0

TimeFormat=0

[Initialization]
#Startup=

#Autoexec=

NetWare Messages=Y

Scheduler=Y

[CleanUp]

AutoUnload=Y

IV.2.a. [Console Command List] SECTION.

This section contains the list of native NetWare console commands you want to use from NCPLUS shell screens. There is one NetWare console command per line, followed by '=' and a value. If the value is 'y', 'Y' or '1', the corresponding NetWare command will be added to the NCPLUS command set and passed to the NetWare console for execution. Any other value disables the command.

You can update this section for new nlms adding commands to the NetWare console like for instance, the NetWare JAVA kit and CDROM.NLM.

NOTE: Novell's CD-ROM driver CDROM.NLM adds the 'CD' command to NetWare console. CD is also a NCPLUS command (Change Directory). You should remove or disable the NetWare CD command in NSH.INI. Other NCPLUS commands are identical to NetWare console commands: 'pause', 'exit', 'send' and 'echo'. There are also deactivated in NSH.INI.

Whenever you want to use one of these NetWare console commands from a NCPLUS screen, you can use the 'NetWare Escape character !'.

CD HELP will change current directory to HELP, while
!CD HELP will execute the 'CD HELP' NetWare console cmd.

"!CD HELP" will send the command CD HELP to the NetWare console screen, where it will be executed by NetWare. If the NCPLUS 'Message' daemon is active, NCPLUS will duplicate the CD HELP output messages on the NCPLUS screen.

IV.2.b [Misc Params] SECTION.

This section contains up to 5 parameters used by NCPLUS. If one of these parameters is not included in the section, a default value will be used.

'Message Color'.

Used to set the default color of NetWare console messages duplicated on the NCPLUS 'NSH Main Screen' by the 'Message' daemon. It's a decimal value corresponding to the IBM PC foreground/background color codes.

Color
Foreground color
Background color

black
0
0

blue
1
16

green
2
32

cyan
3
48

red
4
64

magenta
5
80

brown
6
96

light gray
7
112

dark gray
8
128

light blue
9
144

light green
10
160

light green 2
11
176

light red
12
192

light magenta
13
208

yellow
14
224

white
15
240

The 'Message color' value is created by adding a foreground code to the desired background code.

Example: yellow foreground on green background = 14+32 = 46

Default value is 12 (light red on black).

'HeartBeat Pulse'.

Used to set the default 'HeartBeat' daemon execution frequency. The value is given in milliseconds. It is recommended to keep the default value (200). Minimum is 100 and maximum 1000.

'StackSize'.

Used to set the default NCPLUS shell stack size. The value is given in bytes. When a new shell is created, NCPLUS will assign it a stack of this size. Default stack size is 16384. You should not modify this parameter, unless a message like

"NCLIB Minimum Stack reached for PID xx. Emergency return!"

appears on the NetWare console screen. It may happen when very large batch file are executed, or when a batch file calls several other batch files in cascade. In that case, update the 'StackSize' parameter in 4096 increments.

'Handicap'.

Used to set the default number of threadswitches a NCPLUS shell will have to wait before going back to the NetWare Run Queue. Default value is 5, minimum 0 and maximum 9999. For more information about handicaps, refer to the Novell "NetWare 4.x architecture" manual, or the "III.3. Handicap and Load Factor" paragraph of this manual. You can also load MONITOR.NLM and read the "Scheduling Information" option help. Note that a high value of Handicap will not slow down NCPLUS shells dramatically, but will give more chance to other threads to run.

NOTE: Handicap and Load Factor can be set at run time with the NCPLUS 'prty' command. Each shell may have a different Handicap and Load Factor.

'Load Factor'.

Used to set the default Load Factor of a new NCPLUS shell. The value is given in milliseconds. Default value is 0 (no load). Refer to paragraph "III.3. Handicap and Load Factor" of this manual. Minimum is 0 and maximum 200. Increasing the 'Load Factor' of a NCPLUS shell may slow it down considerably. You should normally set the 'Load Factor' to a value less than 5. A value greater than 2 will guarantee that NCPLUS will never take more than 2 or 3% or the server CPU.

NOTE: Handicap and Load Factor can be set at run time with the NCPLUS 'prty' command. Each shell may have a different Handicap and Load Factor.

'Death Delay'.

Used to set the maximum authorized delay for a shell to die. Value is given in milliseconds. This parameter is purely for information and debugging purpose. Whenever a shell 'dies' (when terminated by user with the kill or exit command, or CTRL+Z, or when a batch is finished), it must release all its resources (memory, file handles, etc.). A warning message will be displayed on the NetWare console if the time spent by a shell to release its resources is longer than the 'Death Delay' current value. Default value is 1000 (1 sec).

'DateFormat'.

Used to set the date format used by NCPLUS commands.

Value
Date Format

0
Europe: DD/MM/YY

1
USA: MM/DD/YY

2
Computer: YY/MM/DD

Default value is 0 (Europe).

'TimeFormat'.

Used to set the time format used by NCPLUS commands.

Value
Time Format

0
HH:MM:SS (24h)

1
HH:MM:SS (12h)

Default value is 0.

IV.2.c. [Initialization] SECTION.

This section contains parameters used by NCPLUS when loaded.

'NetWare Messages'.

When the value of this parameter is '1', 'y' or 'Y', the 'Message' daemon will be automatically started by NCPLUS when loaded. You can also start and stop the 'Message' daemon at run time, using the 'console on' or 'console off' NCPLUS command.

Parameter 'Scheduler'.

When the value of this parameter is '1', 'y' or 'Y', the 'Scheduler' daemon will be automatically started by NCPLUS when loaded. Scheduler activity will be listed on a specific new screen. If you want to start Scheduler with a log file and/or without a log screen, use the NCPLUS 'schedule on /NS /L=file' command.

'Startup'.

Startup lets you specify a NCF (source) or NCL (compiled) batch filename to be executed by NCPLUS when loaded. This file will be executed only ONCE, when NCPLUS is loading. The batch file may contain any NCPLUS command or statement, and NetWare Console commands added in the [Console Command List] section of NSH.INI. It is useful to login NCPLUS, add a set of commands to the Scheduler queue, map drives, etc. Filename must contain the full NetWare path, like "VOLUME:\dir\dir\file.ext".

'Autoexec'.

Autoexec lets you specify the name of a NCF (source) or NCL (compiled) batch filename to be executed EACH TIME a new shell is created with the 'NSH' command. The batch file may contain any NCPLUS command or statement, and NetWare Console commands added in the [Console Command List] section of NSH.INI. It is useful to map drives, create variables and initialize specific information for the newly created shell. Filename must contain the full NetWare path, like "VOLUME:\dir\dir\file.ext".

'TmpDir'.

TmpDir holds the name of the directory where NCPLUS stores its temporary files. Directory must exist on one of the local server volumes. Default value of TmpDir is "SYS:\". When you use the NCPLUS 'login' command, the corresponding NDS user must have RWE rights in this directory. TmpDir is a 'global' parameter shared by all shells.

IV.2.d. [CleanUp] SECTION.

This section contains parameters used by NCPLUS when unloading.

'AutoUnload'.

When the value of this parameter is '1', 'y' or 'Y', the NCLIB.NLM will be automatically unloaded when NSH.NLM is unloaded. Default is 0 (False).

IV.3. LOADING NCPLUS FOR THE FIRST TIME.

During this chapter, we recommend to leave the NSH.INI file like it has be created by the installation program and to load NCPLUS manually. Once you become more familiar with NCPLUS, you will then customize NSH.INI for your specific configuration, and add the 'load nsh' line in the AUTOEXEC.NCF of your server.

Go to your server console and type:

SRV: load nsh <cr>
or

SRV: load volume:dir\dir\nsh <cr>
depending on where NSH.NLM and NCLIB.NLM have been installed. The following messages will appear:

Loading module NSH.NLM

nsh.nlm

Auto-loading module NCLIB.NLM

nclib.nlm
NCLIB: v2.0 installed.

Other messages may appear, like messages created by additional library nlms (CLIB, MATHLIB, etc.).

Note: in this chapter, the name of the example server will be "SRV".

The server will automatically switch to the main NSH (shell) screen called 'NSH Main Screen'. Other messages will appear:

Reading SYS:\SYSTEM\NSH.INI
Starting HeartBeat process...
Starting Console Message Handler...
Starting Scheduler...
[0] F:\LOGIN>_
(Messages about Message and Scheduler daemons may not appear if automatic load of the daemons is not specified in NSH.INI). Pressing the ALT key will let you check the screen name of the first NCPLUS interactive shell.

'NSH Main Screen'.

When pressing ALT+ESC, you may switch to other nlm screens and to the original NetWare Console screen. You can then go back to NSH main screen using the same keys.

The input cursor blinks at the beginning of the command line, right after the prompt "[0] F:\LOGIN>"

The prompt shows the current shell PID (shell #) "[0]", followed by the current virtual drive letter "F:", and the current directory corresponding to the virtual drive: "\LOGIN". This information is updated every time you enter a command, press return (<cr>) or switch to another shell screen.

IV.4. NSH KEYBOARD AND FUNCTION KEYS.

Each NCPLUS shell has its own keyboard buffer and history. It may contain the last 20 commands entered at the keyboard. To select a command in the history, use the 'UP' and 'DOWN' arrows of your keyboard. When you reach the first command of the history (oldest), NCPLUS will display again the last (newest) command (circular history list).

'LEFT' and 'RIGHT' arrow keys are used to move the cursor in the command line. A NCPLUS shell handles lines up to 256 characters. When a line contains more than 80 characters (including the prompt), the line is scrolled to the left.

The 'HOME' and 'END' keys let you move the cursor directly to the beginning or the end of the command line.

The 'INS' (or 'Insert') key toggles the insert mode. When Insert mode is on, the cursor takes a square shape.

The 'ESC' (or 'Escape') key cancels your input and empties the command line. Cursor goes back to the left margin.

When several interactive NCPLUS shells are created, the 'F1' to 'F10' function keys let you switch easily from one shell screen to another. F1 will switch to first shell (PID 0), F2 to second shell (PID 1 or 2), and so on. The 'PGUP' and 'PGDN' keys let you move from one shell screen to the next or previous (based on PID #). These keys will react only when the current (displayed) shell is waiting for input.

NCPLUS commands and keywords may be typed in uppercase or lower case. However, command parameters and variable names are case sensitive!

IV.5. WHAT'S RUNNING? THE PS COMMAND.

Let's check the current status of the first shell created by NCPLUS when you loaded NSH.NLM: You can use the 'PS' (Process Status) command, as shown below:

[0] F:\LOGIN> PS <cr>
PID
PPID
Hdcp
Load
F
Start-Time

Name
*0
 -1
 5
 0
R
21/06/96 10:32:25
nsh
[0] F:\LOGIN>_

Congratulations! You've typed your first NCPLUS command.

First line is the header of the process list. Right after the header, there will be one line per shell created.

First column shows the shell number (PID: Process ID). If the column contains a '*', it corresponds to the shell executing the ps command. It corresponds to the PID # shown in the command line prompt "[0]".

The PPID column shows the PID # of the parent shell. (PPID: Parent PID). '-1' indicates there is no parent shell. This is true for the first shell (PID 0) and for shells or batch programs started by the Scheduler daemon.

The next two columns (Hdcp and Load) show the current value of the Handicap and Load Factor of the shell.

The 'F' (Flag) column shows the shell status: 'R' for 'Running' (processing a command). Other possible values are 'K' (waiting for Keyboard input), 'H' (on Hold) and 'S' (waiting on Semaphore). There may be more than one shell running.

Next column shows when the shell was started, and the last one contains the name of the command.

Since we've just started NCPLUS, there is only one shell running, with no parent (first shell), with a handicap of 5 and no load factor. The command is 'nsh', corresponding to an interactive shell, currently executing the 'ps' internal command.

IV.6. WHERE AM I ? DIR, MAP AND CD COMMANDS.

The '[0] F:\LOGIN>' indicates that, on loading, NCPLUS has created a virtual drive F: corresponding to the SYS:\LOGIN directory of the server. The prompt always shows the CURRENT DRIVE and CURRENT DIRECTORY of the running shell. The CURRENT SERVER is the server mapped to the current drive, and the LOCAL SERVER is the server where NCPLUS nlms are loaded. To take a look at what's in the current drive, you can use the standard 'dir' command.

[0] F:\LOGIN> dir <cr>
SRV/SYS:\LOGIN
CX.EXE 210009 05/11/96 14:22 [Ro----Sh-----DiRi----Dc]
DOSV_AIO.OVL 4965 05/11/96 14:22 [Ro----Sh-----DiRi----Dc] ETHER.RPL 16264 05/11/96 14:22 [Ro----Sh-----DiRi----Dc] IBM_RUN.OVL 2815 05/11/96 14:22 [Ro----Sh-----DiRi----Dc] (more lines)
J31_RUN.OVL 5240 05/11/96 14:22 [Ro----Sh-----DiRi----Dc] KOR_AIO.OVL 4965 05/11/96 14:22 [Ro----Sh-----DiRi----Dc] KOR_RUN.OVL 3710 05/11/96 14:22 [Ro----Sh-----DiRi----Dc] LOGIN.EXE 311171 05/11/96 14:22 [Ro----Sh-----DiRi----Dc] PC98_RUN.OVL 7152 05/11/96 14:22 [Ro----Sh-----DiRi----Dc] PCN2L.RPL 10991 05/11/96 14:22 [Ro----Sh-----DiRi----Dc] PS55_RUN.OVL 3616 05/11/96 14:22 [Ro----Sh-----DiRi----Dc] RBOOT.RPL 8074 05/11/96 14:22 [Ro----Sh-----DiRi----Dc] NLS <DIR> 25/09/96 00:30 [--------------]
OS2 <DIR> 25/09/96 00:41 [--------------]
1540243 Bytes in 63 Files(s) and 2 directorie(s).
[0] F:\LOGIN>_

The standard NSH.INI sets DateFormat to 0 (Europe). Dates are displayed in DD/MM/YY format. Set DateFormat to 1 (US) to get MM/DD/YY format.

Like on NetWare workstations, you can also use the NCPLUS MAP.EXE like 'map' internal command. 'map' lists, creates and deletes NCPLUS virtual drives.

[0] F:\LOGIN> MAP <cr>
Drives A,B,C,D,E map to the local DOS disks.
 F: = SRV/SYS:LOGIN
[0] F:\LOGIN>_

Now, let's try to create a virtual drive G: connected to the SYS:SYSTEM directory.

[0] F:\LOGIN> MAP G:=SYS:SYSTEM <cr>
MAP: G: = SRV/SYS:SYSTEM
[0] F:\LOGIN> MAP <cr>
Drives A,B,C,D,E map to the local DOS disks.
F: = SRV/SYS:LOGIN
G: = SRV/SYS:SYSTEM
[0] F:\LOGIN>_

"Et voilà!". Using the map command, you can create up to 20 virtual drives from 'F:" to 'Z:'. Drives 'A:' to 'E:' are reserved, corresponding usually to the floppy drive and the server DOS boot partition. Most of the workstations use 'F:' as their first network drive, and NCPLUS uses the same convention.

To go from one drive to another, simply type the drive letter followed by ':'

[0] F:\LOGIN> G: <cr>
[0] G:\SYSTEM>_

The prompt is updated.

to change the current directory of a drive, you can use 'map' again, or more simply the standard 'cd' command (Change Directory).

[0] G:\SYSTEM> CD \ <cr>
[0] G:\>CD sys:public\nls <cr>
[0] G:\PUBLIC\NLS>_

Remember to use '\' (backslashes) as a directory separator.

'cd' without any parameter returns the current directory:

[0] G:\PUBLIC\NLS> CD <cr>
SRV/SYS:PUBLIC\NLS
[0] G:\PUBLIC\NLS>_

NOTE: Although NCPLUS handles local DOS drives 'A:' to 'E:', it is NOT possible to use these drives as the CURRENT drives. It is also NOT possible run commands like 'cd a:\subdir'. The default directory of DOS drives 'A:' to 'E:' is ALWAYS '\' (drive root). Therefore 'C:' used as command parameter means 'C:\', and so on.

dir c: is equivalent to dir c:*.*

Whenever you want to access directories or files not at the root of DOS drives, you must enter their full paths, like

dir c:\NW410\SERVER.EXE
dir a:\subdir*.*

According to your NCPLUS license, the 'map' command may be used to create virtual drives corresponding to remote server volumes and directories. Accessing remote servers from a NCPLUS shell requires:

- the correct NCPLUS license, containing the name of the remote server(s) to be accessed (refer to the NCPLUS installation supplement).

- a valid NDS login must be done before accessing remote servers.

IV.7. WHO'S the PILOT here ? CX and login commands.

When a workstation wants to get access to a NetWare server volume, the user will login the workstation using a NDS username, and will map a drive to one of the server volume:

- login will log the user into NDS.

- map will authenticate the user to the server. A connection is be created by NetWare between the workstation and the server.

When loaded by default, nlms like NCPLUS do not log into NDS, and do not create a connection to the server on which there are loaded. Nlms use the 'connection 0' mode, where they have all rights (even more than admin or supervisor) on all volumes and resources of the server. As no login has been requested yet, the first shell of NCPLUS is also using connection 0. (Startup and/or Autoexec options of NSH.INI may be used to do an automatic NCPLUS login).

Using the 'whoami' command you can check the current login status of NCPLUS.

[0] G:\> WHOAMI <cr>
WHOAMI: You are not logged in.
[0] G:\>_

Before a login, you can use the 'cx' (Change conteXt) command to verify what is your default position in the NDS hierarchy. If a 'Bindery Context' context has been set for the server, it will be used as the default NDS context. If more than one bindery context is set, the first one will be used as default context. If no bindery context has been set, you will have to set it for NCPLUS with the cx command.

[0] G:\> CX <cr>
OU=prod.O=acme
[0] G:\>_

(When you type this command on your server, the context displayed will correspond to your own NDS context.)

NOTE: Each shell maintains its own current NDS context, as well as current drive and current directory.

The NCPLUS 'login' command accepts one or two parameters (name, or name + password). The login name must correspond to a valid NDS user object. It may be partial (relative to the current context) or canonical (complete) name. A canonical name must begin with a dot '.'

.paul.prod.acme

(typeless canonical name)
.CN=paul.OU=prod.O=acme
(typed canonical name)
paul

(relative distinguished name

or RDN. Valid only if current

cx is .prod.acme)

cn=paul

(typed RDN).

Select a NDS user name and try to login.

[0] G:\> LOGIN paul <cr>
password: <cr>
LOGIN: logged in as CN=paul.OU=prod.O=acme
[0] G:\>_

NOTES:

1) 'login' and 'logout' commands affect ALL existing NCPLUS shells. Issuing a 'login' or 'logout' in one shell will login or logout all other shells.

2) You must login before accessing remote servers with the 'map' command. The 'map' command will authenticate NCPLUS to the remote server(s).

3) 'login' logs NCPLUS in the NDS. It does not authenticate NCPLUS to the local server, UNLESS one virtual drive (at least) exists BEFORE the login. (NCPLUS may run with no virtual drives at all).

4) When virtual drives exist before a login, NCPLUS has all rights to the corresponding directories on the local server. Once the login is done, the drives are still valid, but access rights are those of the logged user.

5) logout clears (deletes) all virtual drives corresponding to remote servers. When running multiple shells, this may cause some of them to stop. Local server drives are still valid, and all rights are restored to connection 0 mode.

Let's try again whoami:

[0] G:\> whoami <cr>
You are user CN=paul.OU=prod.O=acme
[0] G:\>_

So far, you've been able to load NCPLUS, create virtual drives with map, and login using login and cx. Congratulations! You are now a NCPLUS expert user!

Spend some time using again these commands, and try other simple DOS-like and NetWare-like commands such as dir, md, cd, rd, copy, ren, del, flag, chown, rights, volinfo, type, purge and userlist. Most of these commands have a syntax close to their DOS equivalent. In case of problem, remember that all NCPLUS commands have a '/?' help parameter.

The rest of this chapter deals with advanced features of NCPLUS, like multi-tasking, variables, and batch processing. We recommend you to read it completely, but you may also go directly to chapter "VII. NCPLUS COMMAND REFERENCE".

IV.8. CREATING MULTIPLE SHELLS.

The first command 'ps' showed that only one shell, PID 0, was running. Let's try to create more shells.

IV.8.a. SUBSHELLS.

To create another interactive shell, use the 'nsh' command. 'nsh' without any parameter will create a 'direct child shell' or 'subshell', running on the same stack and screen than its parent shell.

[0] G:\> nsh <cr>
[1] G:\>_

Nothing has changed, except the prompt. '[1]' shows that current shell is now PID 1. PID 1 is using the same screen than its parent PID 0 shell. Enter the 'ps' command again:

[1] G:\> PS <cr>
PID
PPID
Hdcp
Load
F
Start-Time

Name
 0
 -1
 5
 0
H
21/06/96 10:32:25
nsh
*1
 0
 5
 0
R
21/06/96 12:06:14
NSH
[1] G:\>_

Current running shell (marked with '*') is PID 1. Its parent shell is PID 0. Note that PID 0 flag is now 'H' (on Hold). The PID 0 shell will stay on hold until its direct child PID 1 terminates.

PID 1 shell inherits its parent's drives and variables.

NOTE: Updates made on variables and drives of a direct child shell do not affect its parent's drives and variables.

To verify it, let's create a new drive H:
[1] G:\> MAP H:=SYS:ETC <cr>
MAP: H: = SRV/SYS:ETC
[1] G:\> CD PUBLIC <cr>
[1] G:\PUBLIC> MAP <cr>
Drives A,B,C,D,E map to the local DOS disks.
F: = SRV/SYS:LOGIN
G: = SRV/SYS:PUBLIC
H: = SRV/SYS:ETC
[1] G:\>_

Now, we need to terminate PID 1 and go back to PID 0. There are two ways to do it: Press CTRL+Z or use the 'exit' command.

[1] G:\> EXIT <cr>
[0] G:\> MAP <cr>
Drives A,B,C,D,E map to the local DOS disks.
F: = SRV/SYS:LOGIN
G: = SRV/SYS:\
[0] G:\>_

PID 0 shell's drives have not been modified.

IV.8.b. BACKGROUND (INDEPENDENT) SHELLS.

NCPLUS control character '&' lets you start a background command, just like the UNIX '&'. The 'nsh &' command will create an new child shell, running on its own screen and stack. Drives and variables will also be inherited from the parent shell (i.e. the shell executing 'nsh &'). The newly created shell is completely independent from its parent. The parent shell continues to run. It is not put on hold. From the PID 0 shell, let's create a new independent and interactive shell.

[0] G:\> NSH & <cr>
01
[0] G:\>_

Control returns immediately. The current screen is left unchanged. The command 'nsh &' only displays the PID # of the new shell (01).

To switch to the new shell screen, you can use ALT+ESC, F1, or PGDN. Let's see how many shells are running now.

[2] G:\> PS <cr>
PID
PPID
Hdcp
Load
F
Start-Time

Name
0
 -1
 0
 0
K
21/06/96 10:32:25
nsh
1
 0
 0
 0
H
21/06/96 13:06:14
nsh &
*2
 1
 0
 0
R
21/06/96 13:06:14
nsh
[2] G:\>_

IV.8.c. WHY 3 PIDS TO RUN 2 INTERACTIVE SHELLS ?

Actually, the '&' command does 2 things:

- Create a new shell. Create a new screen and assign it to the new shell.

- Read the command line, i.e. characters preceding the '&'. When the command is an external command (i.e. a batch filename) OR 'nsh', a new subshell will be created. When the command is an internal command, (or a compiled .NCL batch file, considered as an internal command) the new shell executes it directly.

'nsh &' has created the PID 1 shell, with its own screen. Since the command preceding '&' was 'nsh', a new subshell is created to enter in the interactive mode (see IV.8.b).

The 'ps' command confirms it:

PID 1 is on hold, and PID 2 is executing the 'ps' command. Note that PID 2 screen name is 'PID 01 Screen', as it runs on the same screen and stack as its parent. Actually, PID 1 does not run at all. This extra shell 'layer' has no influence on NCPLUS performance, and does not use any CPU.

Finally, the ps command shows that PID 0 initial (first) shell is waiting on keyboard. A shell waiting on keyboard does not use any CPU.

Now type:

[2] G:\> EXIT <cr>

or

[2] G:\> <ctrl+z>
When you destroy the PID 2 interactive shell you've just created, PID 1 resumes execution... and 'dies' immediately, as there was nothing more to execute than 'nsh'. PID 1 is then destroyed: its screen is closed and its stack is returned to the NetWare cache.

The original parent screen becomes the active (displayed) screen.

[0] G:\> NSH &
01
[0] G:\>_

IV.9. BACKGROUND COMMANDS.

In the previous paragraph, you have started a background interactive shell with the NCPLUS 'nsh &' command. Using the same '&' syntax, you can start any other NCPLUS internal command or batch file (NCL or NCF files). Such commands or batches will have also their own screen and stack.

[0] G:\> wait 30; dir & <cr>
01
[0] G:\> ps <cr>
PID
PPID
Hdcp
Load
F
Start-Time

Name
 0
 -1
 5
 0
K
21/06/96 10:32:25
nsh
*1
 0
 5
 0
R
21/06/96 13:08:43
wait 30;dir
[0] G:\>_

"wait 30; dir" is a 'command list'. A semicolon separates the two commands written on the same line. The '&' command will start the whole command list in background. 'wait 30' simply waits for 30 seconds, and 'dir' will be then executed. This will give us enough time to check what's going on with a 'ps' command. As stated in IV.8.c, running an internal command in background mode creates only one shell.

IV.10. DESTROYING A BACKGROUND COMMAND OR SHELL.

So far, we have seen how a background shell can destroy or terminate itself, using the 'exit' command, or CTRL+Z keys. The 'kill' command lets you destroy one or more shell from another shell screen or batch file.

When you 'kill' a shell having a subshell (or batch), it will be also destroyed.

[0] G:\> NSH & <cr>
01
[0] G:\> wait 200 & <cr>
03
[0] G:\> ps <cr>
PID
PPID
Hdcp
Load
F
Start-Time

Name
*0
 -1
 5
 0
R
21/06/96 10:32:25
nsh
 1
 0
 5
 0
H
21/06/96 13:20:10
nsh &
 2
 1
 5
 0
K
21/06/96 13:20:10
nsh
 3
 0
 5 0
R
21/06/96 13:20:30
wait 200 &
[0] G:\> kill 1 <cr>
01: killed
[0] G:\> ps <cr>
PID
PPID
Hdcp
Load
F
Start-Time

Name
*0
 -1
 5
 0
R
21/06/96 10:32:25
nsh
3
 0
 5 0
R
21/06/96 13:20:30
wait 200 &
[0] G:\> kill 3 <cr>
03: killed
[0] G:\> ps <cr>
PID
PPID
Hdcp
Load
F
Start-Time

Name
*0
 -1
 5
 0
R
21/06/96 10:32:25
nsh
[0] G:\>_

Rather than typing 'kill 1' and 'kill 2' you can also type 'KILL 1 2 3', or 'KILL 1-3' to kill all PIDs (except PID 0). In the same fashion, a 'kill 1' is identical to 'kill 2' for the current example, as PID 2 is a subshell of PID 1. If PID 2 is killed, it's parent will be also killed.

NOTE: There is one exception to this rule: 'KILL 0' will destroy ALL NCPLUS shells and background commands. When all shells, including 0, are destroyed, NSH.NLM is unloaded.

IV.11. RUNNING BATCH PROGRAMS.

Like DOS, UNIX or NetWare, NCPLUS shells can execute batch files. Batch files are text files containing NCPLUS and NetWare console commands. NetWare batch files have the 'NCF' extension.

To illustrate this feature, you will need to create a batch file. You may create it from a workstation, using EDIT.EXE or any word processor (ASCII). Or you can use the Novell EDIT.NLM. Here is what your batch file should look like.

echo Running file %0 in PID %$
for i in 5 4 3 2 1; do echo %i; wait 1; done
echo End of loop
exit 5

Let's call this file 'BATCH.NCF'. Create it in the SYS:SYSTEM directory.

In this file, 2 special local variables are used: '%0' and '%$'.

%0 is the first word of the original NCPLUS command line that will be passed to the running batch file. Therefore %0 will contain the name of the batch file.

%$ always contains the PID# of the current (running) shell.

Now, let's run the batch file.

[0] G:\> cd system <cr>
[0] G:\SYSTEM> batch <cr>
Running file BATCH in PID 01
5
4
3
2
1
End of loop
[0] G:\SYSTEM> echo %? <cr>
5
[0] G:\SYSTEM>_

To execute the batch file, NCPLUS creates a subshell. As we started the batch from PID 0, PID 1 will be used. (see "Running file BATCH in PID 01" string). PID 0 is suspended.

The 'for....' statement creates a waiting loop executed 5 times. Each loop will wait for one second before displaying the current value of the variable %i.

The last command 'exit 5' ends the current batch and returns the value 5 to its parent. The return code of a command or batch is always stored in the %? local variable of the shell who started the command or batch.

This is checked by entering 'echo %?' on the parent shell screen.

You can pass parameters to a batch file, using the %0 to %9 variables, corresponding to the first 10 words of the command line.

Let's create another batch file 'BATCH1.NCF' containing the following commands:
echo Running file %0 in PID %$
echo There are %# parameters on the command line
echo Original line is: %*
echo Rebuilt line is: %0 %1 %2 %3 %4 %5 %6 %7 %8 %9

The %# variable contains the number of arguments present on the command line. The %* contains the complete original command line.

Now, start the batch file with some parameters:

[0] G:\> batch1 one two three four five 6 7 8 9 <cr>
Running file BATCH1 in PID 01
There are 10 parameters on the command line
Original line is: batch1 one two three four five 6 7 8 9
Rebuilt line is: BATCH1 one two three four five 6 7 8 9
[0] G:\>_
IV.12. COMPILING A BATCH FILE.

In the previous paragraph, we have used NetWare TEXT batch files, in their 'source form', using the '.NCF' file extension. When NCPLUS reads such a file, it analyzes the syntax and 'compiles' it in a computer readable form. Analyzing a batch file syntax requires NCPLUS to start a new subshell.

NCPLUS lets you pre-compile and pre-analyze a batch file. The 'compile' command reads a source NCF batch file, checks the syntax and writes a ready-to-run code in a corresponding 'compiled' file with the '.NCL' extension. This offers interesting advantages:

- Your batch 'code' is already analyzed. No syntax check is necessary to run it. NCL files will be loaded faster than their NCF source equivalent.

- NCPLUS will not create an additional shell to run the compiled batch. Compiled batch files are treated like NCPLUS internal commands.
- Compiled batch files are encrypted and unreadable. Compiling batch files containing sensitive parameters (like login passwords) will enforce your server security.
As an example of 'compile', take the batch file created in the previous paragraph and compile it:

[0] G:\SYSTEM>compile batch1.ncf <cr>
Please Wait...
Return Code: 0
[0] G:\SYSTEM>dir batch1.* <cr>
BATCH1.NCF 166 21/06/96 14:22 [Rw---A---------------] BATCH1.NCL 520 05/11/96 14:25 [Rw---A---------------]
[0] G:\> batch1 one two three four five 6 7 8 9 <cr>
Running file BATCH1 in PID 00
There are 10 parameters on the command line
Original line is: batch1 one two three four five 6 7 8 9
Rebuilt line is: BATCH1 one two three four five 6 7 8 9
[0] G:\>_
As you can see, running BATCH1.NCL gives exactly the same result, except that BATCH1.NCL is executed by the PID 0 shell rather than PID 1. BATCH1.NCL is run as an internal command like dir, map, etc.

IV.13. USING CTRL+C AND CTRL+Z.

Under DOS, users type CTRL+C to break a running command or batch file. NCPLUS lets you do the same to stop a batch file or internal command. All commands may be stopped with CTRL+C.
When the command is internal (or a compiled batch), a 'Break' message is displayed and a new prompt appears, waiting for user input.

When the command is a source batch file (NCF), a 'Break' message is displayed, the batch file is closed, the shell executing the batch file is destroyed, and control returns to the parent shell. A new prompt appears, waiting for user input.

CTRL+Z is the DOS traditional end-of-file character. It is no longer used to mark the end of real text files, but rather to indicate the end of the input stream, usually the keyboard. The DOS command "COPY CON: FILE" reads characters entered from the keyboard and store them in FILE, until the user hits CTRL+Z.

NCPLUS recognizes CTRL+Z as the end of keyboard input. When you press CTRL+Z at an interactive shell prompt line, the shell closes its input and 'dies'. Control returns to its parent shell (if any). If you press CTRL+Z at the first (PID 0) shell prompt line, all shells and background commands will be destroyed and NSH.NLM will be unloaded.

Under certain circumstances, it may be undesirable to let a user close (kill) a shell using CTRL+Z or break a command using CTRL+C. The NCPLUS 'ctrl' command may be used to disable/enable CTRL+C and/or CTRL+Z for a specific shell or batch file.

NOTE: If you disable CTRL+C and CTRL+Z for a shell running an infinite loop command, the only way to stop it is a 'kill' from another shell (if available), or unload NCPLUS from the NetWare console ('unload nsh').

IV.14. DUPLICATING NETWARE CONSOLE MESSAGES.

If you have not modified the NSH.INI file for this first NCPLUS 'tour', the 'Message' daemon has been automatically started when NSH was loaded. 'Message' traps all messages displayed on the NetWare 'System Console' screen and duplicates them on the NCPLUS PID 0 screen. Duplicated messages are displayed using a special color (default is red), to differentiate NetWare messages from NCPLUS messages and command output. This technique offers two advantages:

- You don't need to switch regularly to the NetWare console screen to check for new system messages.

- You may type native NetWare console commands at the NCPLUS PID 0 shell screen and get the command output on the same screen.

At the NCPLUS PID 0 shell screen type the NetWare 'config' command (example below shows the result of the 'config' command for one of the NCI servers):

[0] G:\> config <cr>
File server name: NCI_TEST1
IPX internal network number: 00000001

Node address: 000000000001

Frame type: VIRTUAL_LAN

LAN protocol: IPX network 00001234
Server Up Time: 5 Hours 26 Minutes 24 Seconds

Inter EtherExpress (tm) PRO Driver

Version 1.46 14 June 1994

Hardware setting: I/O ports 300h to 30Fh, Interrupt 5h

Node address: 00AA005B8241

Frame type: ETHERNET_802.3

Board name: EPRO_1_E83

LAN protocol: IPX network 3300001

Tree Name: NCI

Bindery Context(s):

NCI

[0] G:\>_

The config output messages are displayed in red.

NOTE: The config command may display a longer output for your server configuration. If the "<Press ESC to terminate or any other key to continue>" NetWare message appears, hit '!' + return (cr) to continue. The '!' character at the beginning of a NCPLUS shell command line is the 'NetWare escape character': all characters after '!' will be sent to the NetWare console input stream, including the carriage return.

The 'console' NCPLUS command starts or stops the Message daemon.

[0] G:\> console off <cr>
CONSOLE: Message daemon stopped.
[0] G:\> console on <cr>
CONSOLE: Message daemon started.
[0] G:\>_

IV.15. USING NETWARE CONSOLE COMMANDS WITH NCPLUS.

The previous paragraph presented how to use a NetWare console command from a NCPLUS shell screen. All NetWare commands that you wish to use 'as is' from NCPLUS must be listed in the NSH.INI file, in the section [Console Command List] (see IV.2 Updating NSH.INI).

When a NetWare console command is not listed in the NSH.INI file, you can still use it from NCPLUS, preceded by the '!' character.

[0] G:\> !name <cr>
This is server SRV
[0] G:\> !blabla <cr>
??? Unknown command ???
[0] G:\>_

Calling NetWare console commands from NCPLUS has another advantage: you can use NCPLUS variables, logic and arithmetic modes and operations.

[0] G:\> a="allow unencrypted passwords =" <cr>
[0] G:\> set %a on <cr>
Allow unencrypted Passwords set to ON
[0] G:\> set %a off <cr>
Allow unencrypted Passwords set to OFF
[0] G:\> set Days Untouched Before Compression=(3+2-1)<cr>
Days Untouched Before Compression set to 4
[0] G:\>_

IV.16. STOPPING AND UNLOADING NCPLUS.

There are several ways to stop and unload NCPLUS.

1) The 'exit' command: exit stops the current shell and return its parent shell. If the current shell is PID 0, it has no parent, and NSH.NLM is unloaded.

2) Using CTRL+Z: Pressing CTRL+Z at the PID 0 command line will close the first shell input stream and unload NSH.NLM.

3) The 'kill' command: kill accepts one or more PID#s as parameters. A 'kill 0', issued from any shell or background command, will kill the first shell and all others.

4) UNLOAD: You can also switch back to the NetWare system console and type 'unload nsh'.

When several shells and background commands are running, unloading NCPLUS may take a couple of seconds (less than 5).

(This is the NetWare Console Screen)

SERVER: unload nsh <cr>
Please Wait...
NSH: Return code (EXIT=)0
NCPLUS: Thank you for using NCPLUS.
NCLIB: v2.00a 18/10/96 unloaded
Module NSH.NLM unloaded
SERVER:

You can then unload NCLIB.NLM. It can be automatically unloaded, when setting 'AutoUnload' to 'y' in the [Cleanup] section of NSH.INI.

This chapter is now terminated. You can now start to use NCPLUS for simple operations. Refer to the "VII. Command Reference" chapter to get more details on NCPLUS commands.

The next chapter (V) presents NCPLUS system and local variables. Chapter VI is a complete description of NCPLUS language and statements. You should read this chapter if you want to use NCPLUS advanced features.

V. NCPLUS VARIABLES.
NCPLUS handles 3 sets of environment variables:

- User Local Variables, created by the user,

- Global System Variables, containing system information,

- Shell Local Variables, holding shell specific information.

All NCPLUS variables may be used as command parameters. The 'nset' command displays the list of user local variables, and 'nset /s' displays the list of global system variables. Shell local variables are not displayed.

V.1. USER LOCAL VARIABLES.

Each NCPLUS shell handles user local variables. 'Local' means that the scope of a variable is limited to one shell instance (although there are inherited by child shells). 'User' means such variables are created by the user.

A user variable name is formed by a letter, followed by 0 or more letters, digits and '_' characters. Punctuation and national characters are not allowed. Uppercase and lowercase letters are considered to be distinct characters.

To create a variable, type its name, immediately followed by the "=" sign and a value. The "" (empty string) is a legal value.

a=1
Variable= word
VaRiAbLe= word2
x=%a
string="This is a string containing separators"

To create a variable with a value containing separators or NCPLUS special characters, the value must be written with quotes.

To delete a variable, write again its name, immediately followed by the "=" sign and hit return, or insert a semicolon to begin a new command.

a=; x=
Variable= ; VaRiAbLe=
string=

A user local variable exists as long as it has not been explicitly deleted, or as long as the corresponding owner shell exists.

User local variables may contain anything (including "", the empty string). There is no difference between numeric and alphanumeric variables. NCPLUS makes the difference between numeric and alphanumeric values according to the context where there are used, like in logic or arithmetic modes. NCPLUS switches to math/logic mode when it finds an expression between '(' and ')'.

In math/logic mode:

- a variable is numeric when its value contains only digits, with an optional leading '+' or '-' sign.

- a variable is alphanumeric when its value contains any other character.

Refer to Chapter III.8, Arithmetic and logic modes, for more information.

To use a variable as a command parameter or within an expression, its name must be preceded by a '%' sign. When NCPLUS reads a '%', it takes the name of the variable found after the '%' sign and replaces the whole word with the current variable value.

a=sys:public; dir %a
b=%a
x=1;y=2; echo (%x+%y)
list=[dir /N1]; for i in %list; do echo %i; done
a=[accept "Number? "]; b=1000; if test (%a > %b); then echo %a is too big; fi
a="This "; b="is ";c="a sentence"; d=%a%b%c;
Status=on; !set allow unencrypted passwords = %Status

NOTE: Although you can create variable names using uppercase and lower case characters, its recommended to use lowercase for user local variables (at least the first character). It avoids confusion with global system variables, and it improves NCPLUS performance.

User local variables may be created at any time. A good way to create frequently used local variables is to include their definition in the NCPLUS Startup or Autoexec files (see chapter IV. NSH.INI).

NOTE: User local variables (and drives) of a shell are inherited by its subshells and background commands.

V.2. GLOBAL SYSTEM VARIABLES.

Global System Variables are handled by NCPLUS for all shells and background commands. 'Global' means there can be used from any NCPLUS shell or batch. There are called 'System' because their values correspond to system parameters.

Global system variables are read-only. You cannot assign a value to a system variable with the "=" sign. Their name is ALWAYS in UPPERCASE.

NOTE: Some system variables are 'server specific'. Their value will change according to the current server and/or directory of the shell using them. The currebt server and directory of a shell corresponds to the current virtual drive.

The following list details the name and content of NCPLUS global system variables.

Name
Value

CONTEXT
Current NDS Context

CRON
Scheduler daemon status: "ON" or "OFF"

CTRLC
CTRL+C status: "ON" (enabled) or "OFF" (disabled)

CTRLZ
CTRL+Z status. "ON" (enabled) or "OFF" (disabled)

CWD
Current working directory on current drive (incl. srv/vol:) (2)

DATE
Date DD/MM/YY, MM/DD/YY or YY/MM/DD (4)

DIR
Current working directory on current drive (no srv/vol:) (2)

DOM
Day Of Month (1-31)

DOW
Day Of Week ("Monday", "Tuesday"....)

DOY
Day Of Year (1-365)

DRIVE
Current Drive (no ':') (3)

HCAP
Handicap value for current shell

HSERVER
Home Server (where NSH.NLM is loaded)

HSRVRAM
Home Server total accessible memory (in MB)

LOAD
Load Factor for current shell

LYEAR
Long Year (4 digits) ex: 1997

MONTH
Month ("Jan","Feb","Mar","Apr","May"....)

MSG
Message daemon status: "ON" or "OFF"

NDOW
Numeric Day Of Week: Monday="1", Sunday="7"

NDS
NDS status on local server ("UP" or "DOWN")

NDSTREE
Current NDS Tree Name

NMONTH
Numeric Month (2 digits), Jan="01", Dec="12"

OSCCON
Number of connections in use on current server

OSCPU
Current server CPU utilization (%)

OSLID
Language ID# on local server ("4" = English)

OSLNAM
Language Name on local server ("ENGLISH",...)

OSMAX
Maximum # of connections (license) on current server

OSMCON
Maximum # of connections used on current server

OSSN
Current server OS Serial #

OSUPD
days since current server started

OSUPH
hours since current server started

OSUPM
minutes since current server started

OSUPS
seconds since current server started

OSVER
Current Server NetWare OS version ("4.10", "4.11a"..)

PIDLIST
List of existing NCPLUS PIDs (space separated)

PLAY
Player daemon status: "ON" or "OFF"

RIGHTS
Effective trustee rights of NCPLUS in current directory

SERVER
Current Server Name (on current drive or dir) (2)

SYEAR
Short Year (2 digits) ex: "97"

TIME
Time "HH:MM:SS" in 12 or 24 hours (4)

TRAPDATE
Last Event Trap Date (4) (5)

TRAPINFO
Last Event Trap Information (data) (5)

TRAPTIME
Last Event Trap Hour (4) (5)

TRAPTYPE
Last Event Type (5)

USER
NCPLUS NDS user name, if logged in (1)

VOL
Current volume (on current drive/dir) (2)

VOLAFT
Space in use after compression on current volume (in K)

VOLBEF
Space used before compression on current volume (in K)

VOLCMP
Compression status on current volume: "ON" or "OFF"

VOLFDE
of Free Dir Entries on current volume

VOLFDS
Free Space on current volume (in Mb)

VOLLIST
Volume list (mounted) of current server (space separated)

VOLMIG
Migration status on current volume: "ON" or "OFF"

VOLPRM
r/w permission on current volume "Read-Write","Read-Only"

VOLPUR
Purgeable Space on current volume (in K)

VOLSUB
Suballocation status on current volume: "ON" or "OFF"

VOLTDE
Total Directory Entries on current volume

VOLTDS
Total Free Space on current volume (in Mb)

VOLUDE
Used Directory Entries on current volume

VOLUDS
Used Disk Space on current volume (in Mb)

WOY
Week Of Year (1-52)

(1) Empty when not logged in.

(2) If there is no current drive (drive deleted after incident), NCPLUS shells maintain a pointer to a current directory.

(3) Empty when current drive deleted.

(4) See NSH.INI to set a local DateFormat and TimeFormat.

(5) See 'trap' command.

V.3. SHELL LOCAL VARIABLES.

Each NCPLUS shell maintains a list of special variables containing some useful shell information.

Name
Value

$
PID (Process ID) of current shell: "0" to "63".

!
Last background shell or command PID started from current shell.

@
PPID: Parent Process ID. PID of the current shell's parent.

?
Last command return code (internal or external).

#
Number of arguments on the last command line.

*
Last command line.

0 to 9
First 10 parameters of the last command line.

Like system variables, shell local variables are read-only.

V.3. "PATH" USER VARIABLE.

'PATH' (always in uppercase) is an optional user local variable holding a list of directory names or drives where NCPLUS will search batch files (compiled .NCL first, source .NCF second), when a batch file cannot be found in the current directory. 'PATH' may be built from a list of:

- NCPLUS virtual drive names (F: to Z:)

- Local DOS drives (A: to E:)

- NetWare paths (using the "srv/vol:dir\dir... notation)

Each shell may have a different PATH.

NOTE: In the PATH list, drives and directories are separated with semicolons (';'). Semicolons are also used by NCPLUS to separate commands within a command list or statement. You must therefore write the PATH value between quotes.

PATH="F:\SYSTEM;SRV1/SYS:PUBLIC;G:\;"
PATH=(%PATH + "C:\NWSERVER;SYS:ETC")
You can create the 'PATH' variable in the NCPLUS Autoexec or Startup file. Just like any other local user variable, PATH is inherited by subshells and background commands.

V.4. "PROMPT" USER VARIABLE.

'PROMPT' (always in uppercase) is an optional user local variable allowing you to change the NCPLUS command line prompt. When 'PROMPT' exists, NCPLUS uses its string value as the new prompt. To go back to the normal NCPLUS prompt, delete the variable.

[0]F:\>PROMPT="Yes? "<cr>
Yes? <cr>
Yes? PROMPT= <cr>
[0]F:\>_

VI. NCPLUS LANGUAGE SYNTAX.
A 'shell' is a NCPLUS process executing NCPLUS internal commands and native NetWare console commands. Each shell has a standard input stream (usually the server keyboard) and a standard output stream (usually the server screen). Both standard input and output streams can be redirected to files. NCPLUS shells execute commands entered from the keyboard (interactive shell) or stored in text files (batch processing).

Each NCPLUS shell has a unique identification number called 'PID' (Process ID). First shell is always present and has a PID 0. PID numbers for other shells may vary from 1 to 63.

To run a command, NCPLUS executes the following sequence of operations:

1°) Read user input (from keyboard, or from batch file) until the first carriage return (<cr>) delimiting a complete command is found.

2°) Tokenize the command in words.

3°) Analyze the command and perform syntax check.

4°) Substitution and command reduction: search for words and or expressions corresponding to variables, virtual drives, and math/logic or command output substitution operations. Variables and virtual drives are replaced in the command by their current value. When substitution operations are found, there are executed, and there are also replaced by their result in the original command line. The substitution/reduction step is done only once (i.e. a substitution cannot give a result containing another expression to be reduced again).

5°) Start command or expression execution.

Internal commands, filenames, NetWare commands and NCPLUS keywords can be entered in upper or lower case. Any other word (argument) is left unchanged, and used as entered.

VI.1 GENERAL SIMPLE COMMAND FORMAT.

NCPLUS simple commands have the following format:

command command-arguments....<cr>

A simple command is a list of one or more words, separated by space and/or tab characters or other NCPLUS special characters like '|', ';' and '&'. The first word is the name of the command (action) to be executed. The remaining words are passed as arguments to the invoked command. The first word of a simple command can be:

- a NCPLUS internal command,

- a native NetWare console command,

- the name of a source batch file (.NCF), or compiled batch file (.NCL).

Execution begins when the shell reads the first carriage return delimiting a valid simple command.

When a command line contains only a carriage return (empty line), an interactive shell redisplays its prompt line. If an empty line is read from a batch file, it has no effect (NOP: No Operation).

dir <cr>
copy f:*.* g: /s <cr>
echo This message is a list of eight words <cr>
echo "This one is a single string delimited by quotes"<cr>

All commands return a numeric value in the '%?' shell variable. A null (zero) return code indicates that the command was successfully executed. Other values may indicate a problem (when negative) or a FALSE test result.

VI.2. PIPELINE.

A pipeline is a sequence of two or more commands separated by the '|' character. The standard output of each command but the last is connected by a pipe to the standard input of the next command. Each command is run sequentially: the shell waits for one command to be terminated before starting the next command of the pipeline.

This expression is allowed with NCPLUS internal 'filter' commands, such as 'MORE', 'UPPER' and 'LOWER'.

dir | more <cr>
type file.txt | upper <cr>
type file.txt|lower|more <cr>

The '|' is a valid word separator like the space and tab characters.

The return value of a pipeline is the value returned by the last command of the pipeline.

VI.3. GENERAL COMMAND LIST FORMAT.

A command list is a sequence of two or more simple commands or pipelines separated by ';' or '&'. The last simple command or pipeline of the list may be optionally terminated by a '&' before the final carriage return (cr). Evaluation and execution of the command list starts when the first carriage return is read.

A semicolon causes sequential execution. An ampersand (&) causes the preceding command list to be executed in background without waiting for it to finish before starting the next simple command in the list.

cd \system; dir *.nlm <cr>
md \tmp; cd \tmp; copy f:*.* <cr>
echo "background copy";copy f:*.* & echo "started" <cr>
type autoexec.ncf|upper|more; copy autoexec.ncf old <cr>

';' and '&' are valid word separators like '|', space and tab.

The return value of a command list is the value returned by the last simple command or pipeline of the list.

VI.4. {} COMMAND LIST ALTERNATE FORMAT.

As stated before, a NCPLUS shell will start evaluation and execution of a simple command or command list as soon as it reads a carriage return (cr).

It is sometimes desirable for clarity to write simple commands on separate lines. The '{' and '}' special characters can then be used to create a 'group' or list of simple commands or pipelines separated by carriage returns. The shell will start evaluation and execution of the group when it reads the first carriage return following the last '}' of the list.

{
md tmp
cd tmp
copy f:*.*
} <cr>

is equivalent to

md tmp; cd tmp; copy f:*.* <cr>

'{' and '}' are also useful to create a group of commands written on separate lines to be executed by a single background process.

{
md tmp
cd tmp
copy f:*.*
} & <cr>

is equivalent to

md tmp;cd tmp;copy f:*.* &<cr>

while

md tmp & <cr>
cd tmp & <cr>
copy f:*.* & <cr>

will create 3 distinct background processes executing respectively 'md tmp', 'cd tmp' and 'copy f:*.*'. (Actually, it will not produce the expected result!).

The return value of a command list created with '{' and '}' is the value returned by the last simple command or pipeline of the list.

VI.5. KEYWORDS, STATEMENTS AND INSTRUCTIONS.

NCPLUS has special, reserved keywords used to create control statements like tests, loops and switches. NCPLUS keywords are only recognized as the first word of a command list (except 'in') or right after a semicolon or a '&', and when not quoted. Placed anywhere else, there are considered as command arguments. The value returned by a statement is that of the last simple command executed in the statement.

Keywords to build control statements are: case, default, do, done, else, fi, for, if, in, switch, then.
NCPLUS has also three instruction keywords, break, exit and continue, used to stop, skip or abort execution of a statement.

IMPORTANT: Control statements can be written on more than one line. For a better reading, it is actually recommended. When writing a statement on multiple lines, the carriage return (cr) replaces the semicolon. The NCPLUS shell will detect it, and will display a secondary prompt '>' until the final carriage return corresponding to the end of the last statement is entered.

VI.6. IF THEN ELSE FI STATEMENT.

The if then else fi control statement is used to select a command list to be executed according to the result (return value) of another command list.

The general format is:

if cmd list 1; then cmd list 2; fi <cr>

Command list 1 is executed. If its result is 0 (null, or TRUE), then command list 2 is executed, otherwise nothing else is executed.

The alternate format is:

if cmd list 1;then cmd list 2;else cmd list 3; fi <cr>

Command list 1 is executed. If its result is 0 (null, or TRUE), then command list 2 is executed, else command list 3 is executed.

The value returned by a if then else statement is that of the last executed command in the command list 2 or command list 3.

[0] F:\> a=0 <cr>
[0] F:\> if test (%a>0);then echo "Positive"; fi <cr>
[0] F:\>_

(Note the ';' to mark the end of the command lists).

[0] F:\> a=1 <cr>
[0] F:\> if test (%a > 0) <cr>
> then echo "Positive" <cr>
> else echo "Negative or null" <cr>
> fi <cr>
Positive
[0] F:\>_

(In this multi-line notation, the semicolons are replaced by carriage returns (cr). NCPLUS prompt is changed in '>' until the if statement is complete.)

 [0] F:\> if dir /s & then echo "dir PID is" %! <cr>
> else echo "Error starting dir in background!"; fi <cr>
dir PID is 1
[0] F:\>_

(In this if then else statement, the '&' marks the end of command list 1.)

If then else fi statements can be nested:

[0] F:\>a=1 <cr>
[0] F:\> if test (%a > 0) <cr>
> then <cr>
> echo "Positive" <cr>
> else <cr>
> if test (%a == 0) <cr>
>> then <cr>
>> echo "Null" <cr>
>> else <cr>
>> echo "Negative" <cr>
>> fi <cr>
> fi <cr>
Positive
[0] F:\>_

VI.7. THE ? : TEST NOTATION.

For simple tests, the traditional C like '? :' notation can replace the 'if then else fi' statement. This notation only works between parenthesis (see Logic and Arithmetic substitution modes).

The general form is:

(A ? B : C)

if 'A' is a null numeric value (TRUE), or a non empty string, then (A ? B : C) is replaced by the value of B.

if 'A' is a non null numeric value (FALSE) or an empty string (""), (A ? B : C) is replaced by the value of C.

'A', 'B' and 'C' may be variables, constants, or expressions built from substitution operations (command output or math/logic substitution).

if test (%a==""); then echo "empty"; else echo %a; fi

is equivalent to:

echo (%a ? %a : "empty")

and

if test (%TIME > "18:00:00")
then echo "It's time!"
else echo "No yet!"
fi

is equivalent to:

echo (%TIME > "18:00:00" ? "It's time!" : "Not yet!")

VI.8. WHILE DO DONE STATEMENT.

The while statement has the following form:

while cmd list 1; do cmd list 2; done

A while statement repeatedly executes the command list 1 and if its value is null executes the command list 2; otherwise the loop terminates. The value returned by a while is that of the last executed command in the command list 2.

[0] F:\>a=0 <cr>
[0] F:\>while test (%a<1000);do a=(%a++);echo %a;done <cr>
1
2
.....
999
[0] F:\>_

Note the ';' to mark the end of command list 1. Command list 2 contains 2 simple commands terminated by a ';' before the 'done. It can also be written as below:

[0] F:\> a=0 <cr>
[0] F:\> while test (%a < 1000) <cr>
> do <cr>
> a=(%a++) <cr>
> echo %a <cr>
> done <cr>
1
2
.....
999
[0] F:\>_

(In this multi-line notation, the semicolons are replaced by carriage returns (cr). NCPLUS prompt is changed in '>' until the while statement is complete.)

NOTE: the NCPLUS internal command 'true' may be used to build infinite loops:

[0] F:\> while true; do wait 1; echo %TIME; done <cr>
21:12:07
21:12:08
21:12:09
.<ctrl+c>
Break
[0] F:\>
[0] F:\> while true <cr>
> do <cr>
> file=[accept "Enter filename: "] <cr>
> if test (%file == "") <cr>
>> then echo "No filename. Program stopped"; break
<cr>
>> fi <cr>
> copy %file c:\ <cr>
> done <cr>
Enter filename:

As with any other NCPLUS statement, multiple while statements can be nested.

VI.9. FOR IN DO DONE STATEMENT.

The for statement as the following form:

for varname in word list; do command list; done

where 'varname' is a valid variable name, and 'word list' a list of space/tab separated words.

Each time a for statement is executed, the 'varname' value is set to the next word in the word list. Execution ends when there are no more words in the list. The value returned by a for is that of the last executed command in the command list.

[0] F:\> for vol in sys: vol1: data: <cr>
> do <cr>
> dir %vol*.* /S <cr>
> done <cr>
The 'vol' variable will take successively the value 'sys:', 'vol1:' and 'data:'. The 'dir' command will therefore display the list of files found on those volumes.

[0] F:\> for i in 3 2 1 <cr>
> do <cr>
> echo %i <cr>
> done <cr>
3
2
1
[0] F:\>_
The NCPLUS internal command 'seq', combined with the command output substitution mode '[]', is often used in the for statement to build long numeric sequences.

[0] F:\> for i in [seq 1 1000] <cr>
> do <cr>
> echo %i <cr>
> done <cr>
1
2
3
4
....
999
1000
[0] F:\>_

As with any other NCPLUS statement, multiple for statements can be nested.

VI.10. SWITCH CASE STATEMENT.

The 'switch' statement lets you create multi-branch tests. It has the following form:

switch word

do

case word1; do cmd list1; done

case word2; do cmd list2; done

.......

default; do default-cmd-list done

done

'word' will be compared to word1, word2.... for a match. If a match is found, the corresponding command list will be executed. If no match is found nothing will be executed, unless the optional 'default;' case is specified. If included, the 'default;' case MUST be the last in the case list.

'word' can be any valid NCPLUS word or variable, including the empty string (see example below).

[0] F:\> while true <cr>
> do <cr>
> a=[accept "Enter value between 1 and 3:(q to quit)"] <cr>
> switch %a <cr>
>> do <cr>
>> case 1; do echo 1=ONE; done <cr>
>> case 2; do echo 2=TWO; done <cr>
>> case 3; do echo 3=THREE; done <cr>
>> case ""; do echo "Empty string!!"; done <cr>
>> case "q"; do break; done
>> default; do echo "Incorrect value!"; done <cr>
>> done <cr>
> done <cr>
....

The value returned by a switch is that of the last executed command in the selected command list. As with any other NCPLUS statement, multiple switch statements can be nested.

VI.11. BREAK INSTRUCTION.

The 'break' instruction is used in a 'for', 'while' or 'switch' statement to exit the innermost loop or closest 'switch', before its normal termination.

[0] F:\> for i in A B <cr>
> do <cr>
> for j in 1 2 3 4 5<cr>
>> do <cr>
>> echo i=%i j=%j <cr>
>> if test (%j == 2); then break; fi <cr>
>> done <cr>
> done <cr>
i=A j=1
i=A j=2
i=B j=1
i=B j=2
[0] F:\>_

The inner 'for' loop is only executed twice for every outer 'for' loop.

VI.12. CONTINUE INSTRUCTION.

The 'continue' instruction is used in a 'for' or 'while' statement to go back to the beginning of the innermost loop, without executing the rest of a command list.

[0] F:\> for i in A B<cr>
> do <cr>
> for j in 1 2 3 4 5 <cr>
>> do <cr>
>> if test (%j == 3); then continue; fi <cr>
>> echo i=%i j=%j <cr>
>> done <cr>
> done <cr>
i=A j=1
i=A j=2
i=A j=4
i=A j=5
i=B j=1
i=B j=2
i=B j=4
i=B j=5
[0] F:\>_

In the above example, the inner for loop 'echo' statement is skipped when variable j equals 3.

VI.13. EXIT INSTRUCTION.

The 'exit' instruction terminates the current interactive shell or batch file (NCF or NCL), and returns a completion code (return value) to its direct parent shell. The parent shell gets this value in the %? shell variable. When no value is specified, 0 is returned.

NOTE: When the shell executing 'exit' is an independent (background) shell, exit simply terminates the shell; no exit code is returned (no direct parent).

When exit is executed from primary shell (PID 0), all shells are destroyed and NCPLUS is unloaded.

[0] F:\> exit <cr>
will stop and unload NCPLUS. (executed in PID 0)

[2] F:\> exit 5 <cr>
will stop shell PID 2 and return value 5 to its parent shell (in %? of shell PID 0).

VI.14. SPECIAL CHARACTERS AND OPERATORS.

The NCPLUS language uses special characters. The following list gives the meaning of each special character.

!
Exclamation point.

Written at the beginning of a new line, it is used to switch to the native NetWare console screen. All characters after the '!' will be sent to the NetWare console, up to (and including) the return.

"
Double quote.

Used to delimit a string, like "This is a string"

#
Hash.

Used as comment delimiter when written at the beginning of a new line.

%
Percent.

Variable indicator. The word following % is a variable name

&
Ampersand.

Used to start a background command or shell.

()
Parenthesis.

Delimiters for logic and arithmetic operations.

Space and Tab.

Word separators.

;
Semicolon.

Command separator.

[]
Square Brackets.

Delimiters for command output substitution.

`
Grave accent.

Used for command protection with passwords.

{}
Brackets.

Used to group return separated commands in a single execution block (command list).

|
Pipe.

Command pipe connection.

~
Tilde.

NCPLUS escape character. The character following ~ looses its signification for NCPLUS.

<
Less Than

Command Input redirection.

=
Equal.

Variable creation and destruction.

>
Greater Than

Command output redirection (create/overwrite mode).

>>
Double Greater Than

Command output redirection (append mode).

The math and logic mode uses additional operators. These operators are only meaningful when found between parenthesis.

+ - * /
addition, subtraction, multiplication and division

++
Variable increment

--
Variable decrement

!=
Different

==
Equals

> >=
Greater than, greater or equal than

< <=
Less than, less or equal than

&&
Logical AND

||
Logical OR

?:
'?' and ':' may be used to write C like test statements

VI.15. BUILDING WORDS.

Except for keywords, all words (including internal/external command names) in a command can be built from literal strings, variables, and from logic, arithmetic and command substitution operations. Words are delimited by the following separators:

- space or tab,

- semicolon ';',

- brackets '{' and '}',

- ampersand '&',

- pipe '|',

- and carriage return (<cr>).

All characters (including special characters and operators) loose their meaning when preceded with the '~' escape character. Additionally, all quoted characters have no special meaning for NCPLUS.

simple_word
~[Root~]

(equivalent to "[Root]")
one~ two~ three
(equivalent to "one two three")
(1+3)

(equivalent to 4)
1+3

(equivalent to "1+3")
%a

(equivalent to the value of a)
[cd]

(equivalent to the 'cd' command output)
"This is a string" (is a single word)
This is a string (are 4 different words)

Words can also be build by concatenation of different strings, variables and operation modes.

%mydir\file.txt

is a word built from the current value of 'mydir' variable + "\file.txt", like '\user\paul\file.txt'

 [accept "name: "].NCF

is a word built from the output of the 'accept "name: " ' command + '.NCF', like 'autoexec.NCF'

 (128/2)ABC

is a word built from the result of (128/2) + 'ABC', like '64ABC'.

[cd]\%thisdir\(1+5-3)\file.%ext

is a word built from the output of the 'cd' command + '\' + the current value of 'thisdir' variable + '\' + the result of (1+5-3) + '\file.' + the current value of 'ext' variable, like '\USER\PAUL\3\file.TXT'.

NOTE: NCPLUS commands accepts 'empty words' as arguments. An empty word is written as "" (two double quotes).

VI.16. USER VARIABLES AND THE '=' INSTRUCTION.

Each shell maintains a list of user variables. The equal sign '=' is a NCPLUS instruction when used to create user variables.

Creating a user variable is a NCPLUS 'simple command', written or entered at the beginning of a new line, or after a ';' or '&'.

A user variable is created by entering its name, immediately followed by the '=' sign and a value. There must be no separator between the variable name and '='.

A user variable name is a literal (constant) word, beginning with a letter, followed by 0 or more letters, digits or '_' characters. National accented characters are not allowed. Lowercase and uppercase letters are distinct characters.

It is not possible to create a user variable with a name corresponding to a global NCPLUS system variable. NCPLUS global system variables are always uppercase (see paragraph V.2. for a list of system variables).

It is also not possible to create a user variable with a 1 character name corresponding to local shell variables like ?, $, !, *, @, #, and 0 to 9. (see paragraph V.3. for shell local variables).

User variables have a value. A value may be the empty string "". A variable value may contain any character or string. When used as an argument, a variable name must be preceded with the '%' sign.

NOTE: When a variable has no value or when a command argument is the name of a non existing variable, the argument is replaced by an empty word "".

[0] F:\> a=abc <cr>
[0] F:\> MyVar="This is a string" <cr>
[0] F:\> empty="" <cr>
[0] F:\> b=%a <cr>
[0] F:\> Pid=%$ <cr>
[0] F:\> program_name=%0 <cr>
[0] F:\> file_list=[dir /n1] <cr>
[0] F:\> unit_price=60; qty=10 <cr>
[0] F:\> total=(%unit_price * %qty) <cr>
[0] F:\> Equal= = <cr>
The '=' sign is also used to delete a variable.

[0] F:\> a=; MyVar= ;empty= <cr>
Unless explicitly destroyed as above, variables exist until the corresponding 'owner' shell is destroyed.

User variables of a shell x cannot be modified by a shell y. However, when a subshell is created, the subshell inherits a copy of its parent's variables (and mapped drives). However, a COMPILED batch file (.NCL) can modify the user variables of the shell calling it.

The internal command 'nset' is used to display the list of user variables, and 'nset /s' to display the list of global system variables.

VI.17. COMMAND INPUT/OUTPUT REDIRECTION.

Input and output streams may be redirected to text files stored on any NetWare volume or in the DOS partition of the local server. The '>', '>>' and '<' symbols are used to redirect input and output streams of a shell:

'>' redirects output to a new file. If the file does not exist, it is created. If the file already exists, it is destroyed, then created.

'>>' redirects output to a file. If the file does not exist, it is created. If the file already exists, output is written at the end of the existing file.

'<' redirects the input to a file.

[0] F:\> dir > f:list <cr>
[0] F:\> dir g: >> f:list <cr>
[0] F:\> upper < f:list <cr>
VI.17.a NETWARE CONSOLE COMMAND REDIRECTION.

Native NetWare console commands output can also be redirected to a file. The NCPLUS 'Message' daemon must be active (see 'CONSOLE ON' command in chapter VII).

[0] F:\> display networks > net.lst <cr>
[0] F:\> !cd device list >> device.txt <cr>
[0] F:\> bind ipx to ne2000 net=1234 > bind.nfo <cr>
VI.17.b. USING '>>' IN LOOP STATEMENTS.

When all output generated by a 'for' or 'while' loop statement must be redirected to the same file, it is more adequate to use redirection at the loop level rather than at each simple command level.

[0] F:\> for i in 1 2 3 4 5 6 7 8 9 10 <cr>
> do <cr>
> for j in A B C D E F G H <cr>
>> do <cr>
>> echo %i >> file <cr>
>> echo %j >> file <cr>
>> done <cr>
> done <cr>
[0] F:\>_

will open and close 'file' 360 times, when :

[0] F:\> for i in 1 2 3 4 5 6 7 8 9 10 <cr>
> do <cr>
> for j in A B C D E F G H <cr>
>> do <cr>
>> echo %i <cr>
>> echo %j <cr>
>> done <cr>
> done >> file <cr>
[0] F:\>_

will open and close 'file' only once!

VI.17.c. BATCH FILE REDIRECTION.

Batch files (NCF source or NCL compiled forms) can also be redirected.

[0] F:\> type batchdir.ncf <cr>
echo List of %1 and subdirs on %DATE at %TIME
dir %1 /S
[0] F:\>batchdir F:*.* > list <cr>
[0] F:\>_

VI.17.d. REDIRECTING OUTPUT TO THE NUL DEVICE.

Any NCPLUS command, statement or batch file output can be redirected to a pseudo 'NUL' device. No output will be generated.

[0] F:\> copy f:*.* g: /S > NUL <cr>
[0] F:\> config > NUL <cr>
[0] F:\> batch > NUL <cr>
[0] F:\>_

VI.18. ARITHMETIC/LOGIC SUBSTITUTION.

NCPLUS allows arithmetic and logic operations to be used as command arguments (or even command names). This mode is delimited with parenthesis: expressions found between '(' and ')' are considered to be arithmetic or logic expressions, executed and replaced by their result in the original command line. Math/Logic modes can be nested, and parenthesis can also be used to change NCPLUS operators precedence.

An arithmetic or logic expression is a sequence of operands (arguments) and operators. NCPLUS operators are (from high to low precedence):

-
unary minus

++ --
increment and decrement operator (user variables only)

* /
multiplication and division

+ -
addition and subtraction (or '+' string concatenation)

> < >= <= == !=
greater, less than, greater or equal, less or equal, equal, different

&& ||
Logical AND, logical OR

? :
C-like if then else operator

Arguments are considered to be NUMERIC when containing digits only, optionally preceded by a '+' or '-' sign. NCPLUS arithmetic only handles INTEGER values.

Arguments are considered to be ALPHANUMERIC when they contain any other character.

Numeric operators like -, +, ++ , --, / and * are only allowed with numeric arguments, except '+'. '+' used with alphanumeric arguments is equivalent to a string concatenation.

Logic operations can be used with numeric or alphanumeric arguments. In the latter case, operations are done on the lexical value of the arguments.

The following list shows the result of arithmetic and logic operations according to the type of the 2 arguments (NUMeric or ALPHAnumeric).

A=NUM

B=NUM
A=NUM

B=ALPHA
A=ALPHA

B=NUM
A=ALPHA

B=ALPHA

+
NUM
ALPHA (concat)
ALPHA (concat)
ALPHA (concat)

-
NUM
invalid
invalid
invalid

*
NUM
invalid
invalid
invalid

/
NUM
invalid
invalid
invalid

==
math compare
lexical compare
lexical compare
lexical compare

!=
math compare
lexical compare
lexical compare
lexical compare

> >=
math compare
lexical compare
lexical compare
lexical compare

< <=
math compare
lexical compare
lexical compare
lexical compare

&&
A and B !=0 returns 0.

A or B = 0

returns 1.
A and B non empty returns 0.

A or B empty returns 1.
A and B non empty returns 0.

A or B empty returns 1.
A and B non empty returns 0.

A or B empty returns 1.

||
A or B != 0

returns 0.

A and B = 0 returns 1.
A or B non empty returns 0.

A and B empty returns 1.
A or B non empty returns 0.

A and B empty returns 1.
A or B non empty returns 0.

A and B empty returns 1.

The '++' and '--' operators are ONLY valid with numeric user variables.

The '? :' can be used to build 'if then else' statements (See paragraph VI.7.)

a=((78965-8)*(756/2)-3); echo (%a-5+(18/2)); a=(%a++)

copy f:*.* g:
echo Copy (%?==0 ? "done" : "error")

b=(8>1)
#TRUE, b=0

b=(7!=7)
#FALSE, b=1

echo (1+1)
#displays "2"

echo (1+abc)
#displays "1abc"

echo (1>2)
#displays "1" (false)

echo (5!= 6)
#displays "0" (true)

a=0;b=1
echo (%a && %b)
#displays "1" (false)

echo (%a || %b)
#displays "0" (true)

echo ("This string" < "This other string")
#displays "0" (lexical comparison)

a="Any text"
echo (%a != "")
#displays "0" (%a is not empty)

nbfiles=[dir \ /co /s]; totsize=[dir \ /so /s]
echo Average filesize (%totsize / %nbfiles)

echo GOOD (%TIME > "12:00:00" ? MORNING : AFTERNOON)

if test (%USER != "")
then echo "you are logged as " %USER
fi

VI.19. COMMAND OUTPUT SUBSTITUTION.

The command output substitution operation allows any command output to be used as an argument of another command. This mode is delimited with square brackets '[' and ']'. In a command line, everything written between '[' and ']' is considered as another command that will be executed. The output of this command will replace the '[..]' expression in the original command line.

Command output substitution does some filtering. When a command output contains multiple lines, all carriage returns are replaced with spaces, and multiple spaces or tabs are reduced to a single space character.

Multiple command output substitution operations can be nested.

dir [accept "file pattern or directory? "]
assuming user enters 'f*.txt', is equivalent to
dir f*.txt

for i in [seq 1 13]; do echo %i; done
#is equivalent to
for i in 1 2 3 4 5 6 7 8 9 10 11 12 13; do echo %i; done

a=[upper [accept "Enter your name: "]]
#assuming user enters 'PAUL', is equivalent to
a=[upper "PAUL"]
#which is equivalent to
a='paul'

#multiple commands output substitution
a=[echo one; echo two]
#is equivalent to
a="one two"

total=0;small=0;big=0
for file in [dir [accept "Directory name?] /FO]
do
if test ([stat %i /s] >= 100000)

then small=(%small++)

else big=(%big++)
fi
echo Total nb of files %total
echo Nb of files smaller than 100k: %small
echo Nb of files bigger than 100k: %big

See also paragraph III.9 "Command Output substitution mode".

VI.20. SPECIAL 'WHEN' PARAMETER.

'WHEN' is NOT a NCPLUS keyword, but rather a special parameter for the CHOWN, COPY, DEL, DIR and FLAG commands when used on NetWare files. It lets you specify a file selection criteria to 'filter' the command result. WHEN must be entered after ALL other command regular arguments.

WHEN may be used to restrict file search based on:
NDS owner name:
/OW user ,or /OW NOT user
file flags:

/FL flaglist, or /FL NOT flaglist
file size (bytes):
/SI LT|EQ|GT size
file last update date:
/UP LT|EQ|GT mm/dd/yy
file creation date:
/CR LT|EQ|GT mm/dd/yy
file archive date:
/AR LT|EQ|GT mm/dd/yy
last access date:
/AC LT|EQ|GT mm/dd/yy
LT: Lower than

EQ: Equal to

GT: Greater than

flaglist:
ro h sy di ri x t a ic ci dm dc p sh

co cc m ns (status flags)

mm/dd/yy must correspond to the default date format as specified in NSH.INI:

0: Europe dd/mm/yy, 1: USA mm/dd/yy, 2: computer yy/mm/dd

When multiple filters are included, WHEN performs a logical AND to execute the search.

dir *.* when /OW .paul.compta.acme /SI GT 15000
#display files owned by paul and bigger than 15K

dir SYS:*.* /S /OW when /fl H Sy /OW NOT jdoe
#display filenames+owner when file flag is Hidden System
#and when owner is NOT jdoe

copy *.* f: /S when /AR LT 02/10/96
#copy files to F: only when last backup date is 02/10/96

copy G:*.* F: /S when /ow paul; del *.* when /ow paul
#copy paul's files to F: then delete paul's files on G:

del *.* /S when /AC LT 01/01/97
#delete all files not accessed since 01/01/97

flag *.* /s +Ic when /SI GT 1000000
#flag files bigger than 1MB as Immediate Compress.

chown *.* paul /s when /ow john
#Change file ownership to paul when current owner is john

NOTE : ‘dir when’ searches the ‘when’ file. You must enter ‘dir *.* when ...’

VII. NCPLUS INTERNAL COMMANDS.
This chapter describes all NCPLUS internal commands. The same information is available on line, using the 'nhelp' command, or when entering '/?' as the first argument of a command.

In this chapter, the following conventions and format will be used:

command_name

Description:

Description of the command.

Syntax:

command_name parameters options
Parameters:

Description of the command arguments and/or parameters.

Parameters in 'Courier' correspond to command (optional) flags.

Examples:

Some command examples

Notes:

Notes and special information about the command.

See Also:

List of related commands.

ACCEPT

Description:

ACCEPT reads characters from the keyboard until the Enter key (carriage return) is pressed, and echoes the same characters on the current shell screen. A maximum of 255 characters can be read at one time. This command is mainly used to enter parameters or create variables interactively.

Syntax:

accept message

Parameters:

message: optional message displayed by accept before reading characters from the keyboard.

Examples:

accept

accept "Enter a filename: "

Name=[upper [accept "What's your name? "]]

dir [accept "Directory? :"] /N1 > list

while test ([accept "<cr>=continue, Q=Quit"] == "")

do

any command list...

done

Notes:

When 'accept' is used in a command output substitution operation, the final <cr> is removed.

See Also:

echo

BEEP

Description:

Beep generates a short 'bip' sound.

Syntax:

beep
Parameters:

None

Examples:

beep

if noexist server XYZ

then beep

echo XYZ server is down or unreachable!

fi

Notes:

See Also:

CD

Description:

CD (Change Directory) changes or displays the current working directory. It is equivalent to the DOS/UNIX 'cd' command.

Syntax:

cd directory_name

Parameters:

When a 'directory_name' is specified, CD tries to set the current drive to 'directory_name'. When 'directory_name' is omitted, CD displays the directory name corresponding to the current virtual drive. The '.' notation is accepted.

Examples:

cd

cd > cwd.txt

a=[cd]

cd \

cd %newdir

cd ..\dir

cd ...\dir1\dir2

cd VOL1:

cd SYS:\dir2

Notes:

CD 'directory_name' works only when the current shell has at least one virtual drive. CD does not work on DOS local drives (A: to E:).

After a login, the NDS user must have sufficient rights to execute this command.

See Also:

map, rd, md

CHOWN

Description:

CHOWN (CHange OWNer) changes the owner of NetWare files and directories. The new owner name must correspond to an existing NDS object.

Syntax:

chown filename new_owner /S /V /I [WHEN..........]
Parameters:

filename (wildcard '?' et '*' allowed): files to change.

new_owner: name of the new file owner (NDS format).

/S: (optional). search also in subdirectories

/V: (optional). display the name of modified files.

/I: (optional). Ignore errors (continue).

WHEN (optional). See paragraph VI.20 about 'WHEN'

Examples:

chown sys:data*.txt .cn=paul.ou=dev.o=acme

chown %file %new_owner

chown *.* john /S WHEN /OW Paul

chown *.* jacques /S /V > result

chown F:\dir*.exe .server.prod.acme

Notes:

When NCPLUS is logged in, the current user must have sufficient rights to change file ownership.

After a login, the NDS user must have sufficient rights to execute this command.

You can give ownership of a file to a fileserver.

See Also:

dir, flag

CLS

Description:

cls clears the current shell screen and displays a new prompt line at the top of screen. It is equivalent to the NetWare 'cls' and 'off' console command.

Syntax:

cls
Parameters:

None

Example:

cls
Notes:

To execute 'cls' on the original NetWare console screen, use '!cls <cr>'

See Also:

NetWare 'off' command

CMDLIST

Description:

CMDLIST (Command List) displays the list of all NCPLUS internal commands. Commands protected by a password are marked with a '*'. Commands not allowed by the current NCPLUS license are marked with a '°'.

Syntax:

cmdlist
Parameters:

None

Example:

cmdlist

Notes:

See Also:

nhelp, protect

COMPILE

Description:

This command creates a 'compiled' batch file with the '.NCL' extension from a source batch '.NCF' file. The compiled file contains ready-to-run 'byte code' for NCPLUS shells. A NCL file is considered as a regular internal command, directly executed by the current calling shell. No subshell is created, and the NCL code may update the current shell variables and drives.

Syntax:

compile source_filename /S /V
Parameters:

source_filename: name of the source batch file. The '.NCF' extension MUST be specified.

/S: (optional): Syntax Check Only. No NCL compiled file is created.

/V: (optional): Displays additional information when errors found.

Examples:

compile menu.ncf

compile f:myprog.ncf /s

compile c:\nwserver\prog.ncf /v

Notes:

The compiled NCL file will be created in the directory of the source NCF file, with the same name and the '.NCL' extension.

Using NCL files instead of their NCF source equivalent offers several advantages:

- Command syntax is checked at compile time. When calling the NCL file, no syntax check is necessary,

- NCL files require less memory to run,

- loading a NCL file is faster than loading the corresponding NCF (execution time is identical),

- a NCL file contains unreadable, encrypted byte code. Batch files containing confidential data can be compiled for a better security. For example, batch files using passwords (like loading NetWare REMOTE.NLM), or containing NCPLUS password protected commands (see PROTECT) can be compiled. Nobody will be able to read or modify the original source information and/or code. Using the 'autoexec' or 'startup' NCPLUS feature (see NSH.INI) is one way to automatically run NCL files initializing password protected commands (important to re-establish security when server is rebooted).

- No subshell is required to run a NCL file. It is considered as a NCPLUS internal command,

- A NCF file can directly access and modify the current shell variables and drives,

IMPORTANT:

1°) When files X.NCF and X.NCL are in the same directory, the command 'X' will execute X.NCL. If X.NCF must be executed, user can explicitly call 'X.NCF'.

See Also:

NSH.INI, '!', screen

CONSOLE

Description:

CONSOLE starts or stops the NCPLUS 'Message' daemon. This daemon handles automatic replication of messages from the original NetWare System console screen to the NCPLUS PID 0 shell screen.

Syntax:

console on | off
Parameters:

on: (optional) starts the 'Message' daemon.

off: (optional) stop the 'Message' daemon.

When no argument is given, 'console' displays the current 'Message' daemon status: 'on' or 'off'.

Examples:

console

console on

console off

console [accept "on / off ? "]

console %startstop

if test (%MSG == "OFF"); then console on; fi

Notes:

The 'Message' daemon can be started automatically when NCPLUS is loaded. See the 'NetWare Messages' parameter in the '[Initialization]' section of NSH.INI.

Messages duplicated from the NetWare System Console to the PID 0 shell screen are displayed in red. This default color can be changed with the 'Message Color' parameter in the [Misc Params] section of NSH.INI.

The 'Message' daemon must be active to allow correct redirection of NetWare native console commands to a file (ex: 'display networks > net.lst').

The NCPLUS global system variable 'MSG' can be used to test the 'Message' daemon status. It contains 'ON' or 'OFF'.

See Also:

NSH.INI, '!', screen, %MSG system variable

COPY

Description:

This command copies one or more source files to the same number of destination files. Source and destination files may be located on different virtual drives, volumes and servers. It is also possible to copy files from or to the local server DOS partition.

Syntax:

copy source_file destination_file /S /SE /C /O /I WHEN.....
Parameters:

source_file: Source dir\file pattern (wildcard characters '?' and '*' allowed). Pattern may contain a drive (A: to Z:), server name and volume name.

destination_file: (optional). Destination dir\file pattern (wildcard characters '?' and '*' allowed). If omitted, destination files will have the same name than source files, and will be stored in the current directory/drive.

/S: (optional). Include files found in subdirectories.

/SE: (optional). Include empty subdirectories.

/C: (optional). Confirm copy for each file (y/n).

/O: (optional). Overwrite. If destination file exists and is read-only, overwrite old file.

/I: (optional). Ignore errors . Don't stop copy after error (open or locked file, read/write error, etc.)

WHEN (optional). See paragraph 'VI.20. Special WHEN parameter'.

Examples:

copy f:*.* q: /s when /s gt 150000

copy file1 file2

copy *.txt *.doc /c

copy a:*.* c:\floppy /se

copy sys:system*.nlm server2/sys:system /o

copy g:*.*

copy h:\subdir\??doc.* f:??text.*

Notes:

When a path refers to the local DOS partition, the complete path must be specified.

Destination files are created with the file attributes and owner of the corresponding source files.

When a recursive '/S' copy requires creation of destination subdirectories, the new subdirectories owner is set to the server name.

After a login, the NDS user must have sufficient rights to execute this command.

See Also:

dir, del, flag

CTRL

Description:

CTRL enables or disables the <ctrl+z> and <ctrl+c> keys.

Syntax:

ctrl z|c on|off
Parameters:

z or c : (optional). Indicates the <ctrl> key to enable/disable

on or off: (optional) Enables or Disables the corresponding key. Must be present if 'z' or 'c' also present.

When no argument is given, ctrl displays the current status of <ctrl+z> and <ctrl+c>.

Examples:

ctrl z on

ctrl c off

ctrl

echo CTRL+Z is %CTRLZ and CTRL+C is %CTRLC

Notes:

IMPORTANT:

<ctrl+z> closes a shell input stream. When typed at a shell prompt line, it will stop and kill the current shell. If current shell is the main PID 0 shell, NCPLUS is unloaded.

<ctrl+c> stops (breaks) a running command. Control is returned to the current shell.

By default, (when NCPLUS is loaded), <ctrl+c> and <ctrl+z> are enabled.

When <ctrl+z> and/or <ctrl+c> are disabled, pressing the corresponding key pair has no effect. It may be used to avoid unwanted interruption of a command from the keyboard.

Each shell has a distinct <ctrl+c> and <ctrl+z> status. A subshell (or background command) inherits its parent's <ctrl+c> and <ctrl+z> status.

A shell <ctrl+c> and <ctrl+z> status can be checked with the NCPLUS global system variables %CTRLC and %CTRLZ.

NOTE: When <ctrl+c> is disabled, there is no way to break a running command from the shell keyboard. The only way left is to issue a 'kill' command from another shell screen, or to unload NCPLUS from the NetWare System Console if there is only one NCPLUS shell.

See Also:

ps, kill, %CTRLZ and %CTRLC

CURSOR

Description:

Cursor hides or diplays the input cursor.

Syntax:

cursor ON | OFF
Parameters:

ON | OFF: ON displays the cursor, OFF hides it.
Examples:

cls

cursor off

while test (%TIME < "18:00:00")

do

echoxy 15 40 %TIME %DATE

wait 1

done

cursor on

Notes:

Cursor may be used to hide the cursor while building a menu or printing in a loop.

See Also:

echo, echoxy

CX

Description:

CX (Change conteXt) updates or displays the current shell NDS context. It can also be used to display a list of NDS objects found in a container (and below).

Syntax:

cx new_context /T /A /P /V
Parameters:

new_context: (optional). When 'new_context' is the only argument, it's the name of the NDS container corresponding to the new context to set. The NDS container name MUST begin with a '.' (full distinguished name), except for "[Root]". When used with /T, /A, /V, used as context to start search. When omitted, CX displays the current context, or information required with the /T, /A or /V parameters.

/T: (optional). 'Tree': Displays the list of containers found in the current context and below.

/A: (optional). 'All'. Displays the list of NDS objects found in the current context. Used with '/T' it allows to print a list of all objects found in the current context and below.

/V: (optional). 'Verbose'. When used with /A and/or /T, displays the object type (class).

/P: (optional). Pause on full screen.

Examples:

cx

cx %my_container

cx .ou=prod.o=acme

cx "[Root]"

#(Warning! '[Root]' must be quoted.

Echo current context is [cx]

#is equivalent to

Echo current context is %CONTEXT

cx /t /v

cx "[Root]" /t /a /v

#displays the full NDS tree

Notes:

The NCPLUS default context is the first container name found in the 'Bindery Context' NetWare variable.

Each NCPLUS shell has its own context. Different shell may have different contexts.

A shell current context can be found in the %CONTEXT NCPLUS system variable.

See Also:

login, logout, %CONTEXT system variable

DEBUG

Description:

This command enables or disables the current shell debug mode. When in debug mode, a shell is in a special 'single step' mode. Before executing it, NCPLUS redisplays the command and asks for confirmation (y/n). 'Debug' can also be used to debug (single step) NCF or NCL batch files.

Syntax:

debug on | off

Parameters:

on or off: enables / disables the debug mode. If omitted, 'debug' displays the current shell debug mode.

Examples:

debug

debug on

debug off

Notes:

When debugging a 'login' or 'protect' command, 'debug' will display '******' instead of the original arguments. It avoids original passwords to be printed on screen, and guarantees NCL security

See Also:

protect, compile

DEC

Description:

Dec (Decimal) translates its single hexadecimal argument in decimal notation.

Syntax:

dec hexadecimal_value

Parameters:

hexadecimal_value: hexadecimal literal or any variable or substitution operation generating an hexadecimal literal.

Examples:

dec ff0135be

a=[dec abc0bebe]

a=feedbabe; dec %a

Notes:

Dec accepts 32 bits hexadecimal values (0 to ffffffff).

See Also:

hex

DEL

Description:

DEL deletes files from NetWare volumes and the local DOS partition.

Syntax:

del filename /S /F /C /V /A /I WHEN.......
Parameters:

filename: file/dir pattern for files to delete. (wildcard '?' and '*' allowed). Filename may include a server, volume or drive specification.

/S: (optional). 'Subdir'. Also deletes files found in subdirectories. Note: Subdirectories are NOT deleted.

/F: (optional). 'Force'. Also deletes Read Only files .

/C: (optional). 'Confirm'. Asks for confirmation (y/n) before deletion.

/V: (optional). 'Verbose'. Displays names of deleted files.

/A: (optional). 'Automatic Purge'. Immediate purge of deleted files.

/I: (optional). Ignore errors (continue).

WHEN (optional). See paragraph 'VI.20. Special WHEN parameter'.

Examples:

del a:*.* /c

del server2/vol1:dir*.txt /f

del C:\FILE????.CHK

del z:*.bak /s /f WHEN /A LT 01/05/96

del %files %param /a

del *.* /v /a

del *.* /s WHEN /OW PAUL

Notes:

/S does deletes files found in subdirectories, but not the subdirectories.

After a login, the NDS user must have sufficient rights to execute this command.

IMPORTANT!! 'del *.*' does not ask for confirmation.

See Also:

rd, xdel

DIR

Description:

DIR prints a list of files and directories according to the search pattern and parameters of the command line. DIR runs both on NetWare volumes and the local DOS partition.

Syntax:

dir filename /S /P /FO /DO /CO /SO /OW /N1 /N2 /N3 /Tree /ST /UD /AD /BD /W WHEN.......
Parameters:

ALL parameters are OPTIONAL. When no parameter is given, dir displays the list of files and dirs found in the current directory (current drive).

filename: Dir/file pattern ('?' and '*' allowed). If omitted, the default pattern is '*.*' in the current drive/dir.

/S: 'Subdir'. Also searches in subdirectories.

/P: 'Pause'. Pause on full screen.

/FO |/DO: 'File Only' or 'Directory Only' (mutually exclusive). Searches only for files or only for subdirs matching 'filename'.

/CO: 'Count Only'. Do not display filenames. Displays only total count of files and/or subdirs found.

/SO: 'Size Only'. Displays only total size of files found. (for files only).

/OW: 'Owner'. Displays file/dir owner. With /OW, file and dir attributes are never displayed.

/N1: 'Name1'. Displays 1 file/dir name per line. Name only, starting from '\'.

/N2: 'Name2'. Displays 1 file/dir name per line. Name only, including volume name.

/N3: 'Name3'. Displays 1 file/dir name per line. Name only, including server and volume name.

/Tree: equivalent à /DO + /N3 + /S.

/ST: 'Status'. Displays file/dir status (compression, etc.).

/UD: 'Update Date': displays last update date.

/AD: 'Access Date': displays last access date.

/BD: 'Backup Date': displays last backup date.

/W: 'Wide List'. Displays 5 names per line (short names only).

WHEN (optional). See paragraph 'VI.20. Special WHEN parameter'.

Default options are:

Search files and dirs, displays name, creation date and time, attributes.

Examples:

dir

dir | more

dir /p /s WHEN /MD LT 01/07/95

dir c:*.sys

for i in [dir \ /N1]; do echo %i; done

dir f: /ow

dir /w

echo Paul has [dir *.* /fo /co /s WHEN /OW Paul] files

dir *.* /fo /do

dir g:*.txt /st /ud

dir z:%what > dir.txt

Notes:

/N1, /N2 and /N3 are useful to create file lists used in 'for in' statements.

When multiple options are specified, dir may generate lines longer than 80 characters.

/OW and /ST options are mutually exclusive (to avoid very long lines).

See Also:

flag, chown, stat

ECHO

Description:

echo writes its arguments back in the current output stream (screen or file), followed by a carriage return.

Syntax:

echo -n -r arguments....

Parameters:

-n: (optional, but always as first parameter). Do not print a carriage return after the last argument.

-r: (optional, but always as first or second parameter). Print a single carriage return (no line feed) before printing other arguments. When used at the command (prompt) line, this will send the cursor to the left margin prior to print the other arguments.

arguments: (optional). Any number of constants, variables or substitution operations.

Examples:

echo

echo %TIME > time.now

for i in [seq 9 0]; do wait 1; echo -n -r %i ; done

echo -n Good (%TIME>"12:00:00" ? Morning : Afternoon)

echo a b c d

#equivalent to

echo "a b c d"

#but not to

echo "a b c d"

echo F:%dir\%name

echo (1024*1000)K = 1Mb

echo This string is build from 7 arguments

echo "This string is build from one argument"

Notes:

When echo prints more than one argument, arguments are separated by a space character.

Entering 'echo -n string' from a shell prompt line will have no visible effect, as the next prompt will overwrite 'string'.

See Also:

type, more, echoxy

ECHOXY

Description:

echoxy displays its arguments on the current screen, starting at the given row and column.

Syntax:

echoxy row column arguments....

Parameters:

row: Row number where arguments will be displayed (1 <= line <= 25).

column: Column number where arguments will be displayed (1 <= line <= 80).

arguments: (optional). Any number of constants, variables or substitution operations. If omitted, echoxy sets the cursor at row/column.

Examples:

echoxy 10 10; echo %TIME

#is equivalent to

echoxy 10 10 %TIME

cls; cursor off

for i in [seq 9 0]

do

wait 1

echoxy 15 40 %i

done

cursor on

echoxy 5 5 F:%dir\%name

echoxy 1 1 (1024*1000)K = 1Mb

Notes:

When echoxy prints more than one argument, arguments are separated by a space character. echoxy does NOT print a carriage return + line feed after its arguments. When no arguments are specified, echoxy only changes the current cursor position. This command writes directly to the screen, and therefore its output cannot be redirected to a file.

See Also:

echo

EXIST

Description:

EXIST checks whether a given object of a given type exists or not. If the object exists, this command displays and returns 0 (TRUE), otherwise 1 (FALSE). Exist is mainly used with 'if then else', 'while' and the '? :' operator..

Syntax:

exist object_type object_value

Parameters:

Both parameters are required.

object_type indicates the kind of object to find. Exist and noexist recognize the following object types:

DIR: directory

FILE: file

VOL: NetWare Volume (on current server)

DRIVE: Virtual NCPLUS drive or local DOS drive

SERVER: NetWare server (bindery format: 1 to 48 characters)

PSERVER: NetWare Print Server (bindery format: 1 to 48 characters)

NLM: NLM (loaded on current server)

LOGGED: Logged username (on current server)

NDSOBJ: NDS object name

BNDOBJ: Bindery object name (on local server)

value: Name of the object to find. For types FILE, DIR, and BNDOBJ, wildcard characters '?' and '*' are allowed. Other types require a complete valid name.

Examples:

srv=[accept "Server? "]; if exist server %srv

then map q:=%srv/sys:;else echo "Server not active"; fi

if exist nlm monitor.nlm

then !unload monitor; else "monitor not loaded"; fi

if exist logged jdoe

then send "logout please!" to jdoe; fi

if exist dir \PAULDIR

then cd \pauldir

else md \pauldir; cd \pauldir; fi

if exist file log.txt

then copy log.txt log.old; fi

if exist vol xyz: ;then map g:=xyz:

else echo Please wait while xyz: is mounted

!mount xyz; wait 30; map g:=xyz: ;fi

exist ndsobj .dev.acme

if test %? then echo Found; else echo Not found; fi

if exist bndobj HOST_GATEWAY*

then echo Gateway is active

else send "ALERT! Host Gateway is down!" to all

fi

Notes:

As for all NCPLUS commands, exist return code is stored in the %? variable of the current shell. For exist and noexist examples using the '? :' operator, see noexist.

See Also:

noexist, stat

FEXT

Description:

Fext (File EXTension) displays the extension of its filename argument.

Syntax:

fext filename

Parameters:

filename: File or directory name. May include drive, server, volume and subdir information.

Examples:

fext C:\autoexec.bat

#will display 'bat'

fext file.doc

#will display 'doc'

fext sys:system

#will display nothing

ext=[fext sys:ncplus\nsh.nlm]

Notes:

When a file has no extension, fext display nothing ("" empty string).

See Also:

fname

FLAG

Description:

FLAG displays and/or updates NetWare file and directory attributes.

Syntax:

flag filespec attribute_list /S /P /DO /I /N1 /N2 /N3 WHEN.....
Parameters:

Except 'filespec', all parameters are optional.

filespec: File or directory name. Wildcard characters '?' and '*' are allowed.

attribute_list: If not specified, FLAG will display the current attribute list of each file and dir matching filespec (inc. owner name).

To change an attribute, its name must be preceded with '+' (set) or '-' (unset).

The attribute names are:

Ro and Rw: Read Only and Read Write (+rw = -ro and +ro = -rw). File only.

H: Hidden

Sy: System

A: Archive (file only)

Sh: Shareable (file only)

X: Execute Only (file only.)

T: Transactional (file only)

P: Purge Immediate

Ci: Copy Inhibit

Di: Delete Inhibit

Ri: Rename Inhibit

Ic: Immediate Compress

Dm: Don't Migrate

Dc: Don't Compress

The special '+n' or '-n' (normal) attribute is equivalent to '+rw -sh'; all other attributes are unset, except archive. '+n' or '-n' is only for files.

/S: Display/Search also in subdirectories.

/P: Pause on full page.

/I: Ignore errors. (continue).

/DO: Directory Only. Used to change directory attributes.

/N1: Display option 1: 1 file/dir per line, name from '\'.

/N2: Display option 2: 1 file/dir per line, name from '\' including volume name.

/N3: Display option 3: 1 file/dir per line, name from '\' including volume name and server name.

WHEN (optional). See paragraph 'VI.20. Special WHEN parameter'.

Examples:

flag *.* /s > list.txt

flag %file +ro +di +ci

flag g:*.exe +x +sh -rw

flag

flag *.doc +n

flag *.* +Ic WHEN /S GT 100000

Notes:

With 'dir' and 'flag', a file or dir status list may contain the following abbreviations:

Co: Compressed

Cc: Can't Compress

M: Migrated:

Ns: No Suballoc (dir only).

After a login, the NDS user must have sufficient rights to execute this command.

See Also:

chown, dir, stat

FNAME

Description:

Fname (File NAME) displays the name of its filename argument, without extension and path.

Syntax:

fname filename

Parameters:

filename: File or directory name. May include drive, server, volume and subdir information.

Examples:

fname C:\autoexec.bat

#will display 'autoexec'

fext file.doc

#will display 'file'

fext sys:system

#will display 'system'

name=[fname sys:ncplus\nsh.nlm]

Notes:

See Also:

fext

GETKEY

Description:

Getkey reads a single character from the keyboard and compares it with its arguments. It returns in %? a value corresponding to the position of the matched argument. Getkey does not return until a character matching one of its argument is entered at the keyboard.

Syntax:

getkey character list...

Parameters:

character list: (optional). list of space separated characters.

Examples:

getkey 1 2 3 4

getkey

#simple menu progam.

echo "A:Do This B:Do That Q:Quit"

getkey 1 2 Q

#getkey will return 1,2 or 3 in %? for A,B or Q

a=%?

switch %a

do

case 1; do dothis; done

case 2; do dothat; done

case 3; do exit; done

done

Notes:

Getkey handles lowercase characters like uppercase. When used without argument, getkey returns 0 in %? as soon as one character is entered.

See Also:

accept, pause, yesno

GO

Description:

GO lets you switch from the current shell screen to another NCPLUS shell screen.

Syntax:

go shell_pid

Parameters:

shell_pid: (mandatory). PID number of the shell to switch to. If the shell exists, its screen is displayed (becomes active).

Examples:

go 3

go 0

go %next

Notes:

When a shell 'x' is on hold (while running an external source NCF file), a 'go x' command may switch the screen to 'x+1' or 'x+n' shell screen, corresponding to the running NCF.

See Also:

F1 to F10 function keys, PGUP and PGDOWN keys, screen

HEX

Description:

Hex translates and displays its decimal integer argument in hexadecimal notation.

Syntax:

hex decimal_value

Parameters:

decimal_value: Constant, variable or substitution operation corresponding to a decimal integer value.

Examples:

hex 16

a=hex (120*85/7-6*(3+5+96-2))

Notes:

Hex accepts decimal integer values from -231 to +231.

See Also:

dec

KEYPLAY

Description:

KEYPLAY starts the 'Player' daemon. The daemon reads a 'scenario' file, (also called 'script'), containing keystrokes and special commands, and replays it on any NetWare screen. It allows automatic execution and control of nlms usually requiring an operator for keyboard input.

Syntax:

keyplay script_file
Parameters:

script_file: name of the script file. This is an ASCII text file containing Keyplay commands ('#' preceeded) and keystrokes to replay.

Examples:

keyplay sys:nsh\demo.scr

Notes:

Keyplay reads the script file and pushes back the characters in the keyboard buffer of any NetWare virtual screen. Special commands can be included in the script to select the target screen(s), select input speed, switch from one screen to another, test a screen for a displayed value, etc.

Refer to the "USING THE PLAYER DAEMON WITH KEYPLAY" chapter for a complete description of script commands and format.

Once started, keyplay will read the script file until end of file or until a '#STOP' or error condition is found. While keyplay is running, the current shell (from which keyplay has been started) is on hold. You can also hit 's' or 'S' on the shell keyboard to stop Keyplay.

The script size is only limited by the server available memory.

 See Also:

screen

KILL

Description:

'kill' stops and destroys one or more NCPLUS running shells.

Syntax:

kill pid | pid.... | pid-pid

Parameters:

pid: Process ID of the shell to kill. PIDs can be obtained with the 'ps' command. Kill accepts 1 or more space separated PIDs, or a 'pid1-pidn' pair, where 'pid1' is the first of a pid list and 'pidn' the last.

Examples:

kill %$

#self kill. equivalent to 'exit'

kill 3

kill 2 5 6 12 25 4

kill 3-20

kill 0

Notes:

When the shell to kill is running (R status), the command is stopped (break). All its files are closed. If the shell to kill is a background independent shell, its screen is also destroyed.

The PID of a shell is stored in its %$ variable. 'kill %$' is equivalent to 'exit'.

'kill 0' will destroy ALL shells and unload NCPLUS (NSH.NLM and NCLIB.NLM).

When a shell to kill is on hold (H), its subshell(s) will be also destroyed.

See Also:

ps, exit

LEFT

Description:

left is the equivalent of the BASIC 'LEFT$' function. It displays the first n characters of a string given as argument.

Syntax:

left string number

Parameters:

string: Character string (literal, variable, substitution operation).

number: number of characters (from left) to be extracted from string and displayed. 'number' must be less or equal to the total number of characters in the string.

Examples:

left "Hello" 4

#displays "Hell"

a="[0012beca][001b6cfe38c6]"

echo -n "Network address: "; left %a 10

#displays "Network address: [0012beca]"

answer=[upper [accept "Yes/No ?"]]

if test ([left [upper %answer] 1] == Y)

then echo "Okay, let's continue"

else echo "End."

fi

#'yesno' can be used for a similar result

yesno; if test $?

then echo "Okay, let's continue"

else echo "End."

fi

Notes:

See Also:

right, mid

LOCK

Description:

This command blanks the server screen and locks the keyboard, until a password is entered.

Syntax:

lock password

Parameters:

password: (optional). password to unlock the screen and keyboard. If omitted, lock will ask for a password.

Examples:

lock

lock xyz

Notes:

Only one shell can run lock at one time. The current screen is cleared, and a rolling message asks for a password to unlock the screen. Its not possible to switch to another screen using <ALT+ESC> or <CTRL+ESC> until the password is entered. 'Lock' offers the same protection than the equivalent MONITOR.NLM option, and therefore does not require this nlm to be loaded.

To lock the server screen and keyboard without a password, user can enter 'lock ""' or 'lock', followed by <cr> when the command asks for a password.

'lock' does not recognize admin or supervisor password as the 'super password' to unlock the screen. Only the given password is valid. THERE IS NO WAY TO UNLOCK THE SCREEN IF YOU DON'T REMEMBER THE PASSWORD.

To lock the screen with your own private password, you can for example create a NCF file containing 'lock password <cr>' and compile it with the 'compile' command. This will generate an encrypted .NCL file you can call instead of 'lock'.

See Also:

MONITOR.NLM

LOGIN

Description:

The 'login' command authenticates NCPLUS to NDS. All active (existing) shells are then authenticated, and use the privileges and restrictions assigned to the specified NDS user. Access to remote servers is allowed only after a login.

Syntax:

login username password

Parameters:

username: NDS username for login. It can be relative to the current context, or fully distinguished (full name, beginning with '.').

password: (optional) user password. If not specified, login will ask for a password (only when user account has a password)

Examples:

#username found in current context.

login paul

distinguished names

login .cn=admin.o=acme mypwd

login .cn=admin.o=acme

login %user %pwd

Notes:

1°) When login is executed, ALL running (R status) shells are stopped, like with a <CTRL+C> (break). If background commands are running, there are destroyed. Background shells waiting for keyboard input (K) are not destroyed. Login does an implicit logout: all shells share the same NDS username. If NCPLUS shells were already logged in, all drives mapped to remote servers are destroyed.

2°) You cannot map drives to remote shells before a login. The 'map' command authenticates NCPLUS to remote servers (licensed connection).

3°) 'login' creates a drive 'F:' corresponding to 'SYS:\' on the local server. This authenticates NCPLUS to the server (licensed connection).

4°) The current NDS username is stored in the '%USER' system variable.

5°) To run login automatically when NCPLUS is loaded, you can use the 'Startup' option (see NSH.INI):

Create a file containing 'login user password <cr>', and compile it into a .NCL file. Use this NCL file as the 'Startup' file for NCPLUS. The file will be executed when loading NCPLUS. There is no way to see or read the contents of a NCL file: the password is protected, even when running in debug mode.

See Also:

logout, map, whoami, '%USER'

LOGOUT

Description:

logout logs all NCPLUS shells out from NDS. All drives mapped to remote servers are destroyed. NCPLUS runs again in 'connection 0' privilege mode, but only on the local server.

Syntax:

logout
Parameters:

none

Examples:

logout

if test (%User != "")

then logout

else echo "You are not logged in"

fi

Notes:

1°) When logout is executed, ALL running (R status) shells are stopped, like with a <CTRL+C> (break). If background commands are running, there are destroyed. Background shells waiting for keyboard input (K) are not destroyed. All drives mapped to remote servers are destroyed.

2°) After a logout, NCPLUS virtual drives mapped to the local server are preserved. NCPLUS shells can then access the local server volumes using connection 0 mode (all rights).

3°) You can disable or at least protect the logout command, to avoid unauthorized access to files. See 'protect' command.

See Also:

login, map, whoami, %USER, protect

LOWER

Description:

'lower' is a NCPLUS shell filter replacing uppercase characters with lowercase.

Syntax:

lower string

Parameters:

string: (optional) string: constant, variable, or substitution operation. If omitted, lower reads characters from its input stream (until end of file or <CRTL+Z>).

Examples:

lower "THIS IS UPPERCASE"

a=[lower [dir *.* /N1]]

lower [userlist /q]

lowercase=[lower %uppercase]

type autoexec.ncf | lower

lower < text.up > text.low

Notes:

lower (and upper) do not generate a final <cr>.

See Also:

upper

MAP

Description:

map creates, deletes and displays NCPLUS shell virtual drives. Drives from F: to Z: can be mapped to any NetWare volume and/or directory, including on remote servers after login. The syntax is equivalent to the Novell MAP.EXE utility.

Syntax:

map drive:=dir_spec

map drive:=drive_spec

map del drive:
Parameters:

All parameters are optional.

del: Used to destroy a mapped drive.

drive: letter from 'F' to 'Z' (uppercase or lowercase)

dir_spec: NetWare directory path, like 'srv/vol:dir....'. Server and Volume information can be omitted (default: local server and current volume).

drive_spec: used to map a drive using another drive_spec. Ex: 'G:', 'H:\XYZ'....

'map' with no argument displays the list of current mapped drives.

Examples:

map

map f:=remote/vol1:data

map del g:

map s:=\

map h:=\public

map k:=h:nls\english

map l:=k:..

map j:=f:

Notes:

Drives 'A:' to 'E:' cannot be mapped to a NetWare volume.

Virtual drives are local to each shell. When a shell creates another shell (subshell or background shell), the child shell inherits a copy of its parent drives. A shell cannot change the drive mapping of another shell.

NOTE: Map commands in a NCF (source) batch do not change the calling shell drive mapping, while a NCL (compiled) batch file can change it (NCL runs as an internal command).

Mapping a drive to a remote server is only allowed after a login. A logout destroys all drives mapped to remote servers.

See Also:

login, logout

MD

Description:

'md' (Make Directory) creates a new DOS or NetWare directory.

Syntax:

md directory

Parameters:

directory: name of the directory to create. When creating a new directory in the local DOS partition, the name must begin with the local DOS drive letter (A: to E:).

Example:

md c:\tmp2

md remote/vol1:new

md xyz

md %mydir

Notes:

After a login, the NDS user must have sufficient rights to execute this command.

Directories can also be created on remote servers volumes.

See Also:

rd

MID

Description:

'mid' is the equivalent of the BASIC 'MID$' function, to extract a substring from a string.

Syntax:

mid string start length

Parameters:

string: string from which a substring must be extracted: constant, variable or substitution operation.

start: position of the first character of the substring in the original string. 1=first character from left.

length: size of the substring (in number of characters).

Examples:

verb=[mid "Paul is absent" 6 3]

b=[mid ABCDEF 2 1]

#the following example uses mid to get a word from a digit

#list is a string build from 10 blocks of 6 characters

#corresponding to a digit name.

list="ZERO ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE "

x=[accept "Enter a digit: "]

if test (%x<0 || %x>9)

then echo "Incorrect"

else echo [mid %list (%x*6+1) 6]

fi

Notes:

See Also:

left, right, word

MORE

Description:

'more' is a NCPLUS filter command equivalent to the DOS or UNIX 'more'. It displays a file (or lines read from its input stream) and pauses on full screen.

Syntax:

more filename

Parameters:

filename: (optional). file to read. 'more file' is equivalent to 'type file /p'. When filename is omitted, more reads from its input stream (default: keyboard), until the <CTRL+Z> character or end of file.

Examples:

dir | more

more autoexec.ncf

flag *.* /S | upper | more

more < file.txt

Notes:

See Also:

lower, upper

NCLDOWN

Description:

This command stops all NCPLUS shells and unloads NSH.NLM.

Syntax:

ncldown
Parameters:

None

Example:

ncldown

Notes:

ncldown is equivalent to 'kill 0', and 'exit' or <CTRL+Z> on PID 0 shell screen.

See Also:

kill

NHELP

Description:

nhelp displays the list of NCPLUS help topics, or a specific help topic.

Syntax:

nhelp topic

Parameters:

topic: (optional). Nhelp searches the given topic in NSH.HLP and displays it. When omitted, nhelp displays the list of topics found in NSH.HLP

Examples:

nhelp

nhelp accept

nhelp dir

Notes:

The NCPLUS help file NSH.HLP is a plain ASCII text file, stored in the same directory than NSH.NLM. Help information is organized in topics.

Topics begin with a special '<topic> title of topic' line, and terminate at the next topic marker or end of file. You can read the content of NSH.HLP with 'type' or 'more'. NCPLUS users can add their own help topics in NSH.HLP.

'nhelp xyz' is equivalent to 'xyz /?'. When the first argument of a simple command 'xyz' is '/?', NCPLUS looks in NSH.HLP for a line like '<topic> xyz'. If found, the help information following the '<topic> xyz' line is displayed (until next topic or end of file).

NCPLUS checks for the '/?' command argument BEFORE the command is executed. This allows users to include additional help in NSH.HLP for .NCF or .NCL batch files.

See Also:

commands with '/?' as first argument.

NLMLIST

Description:

This command displays the list of NLMs loaded on the current server. The current server is the server corresponding to the current NCPLUS drive.

Syntax:

nlmlist /F /P
Parameters:

/F: (optional) Full Info. Displays all NLM information, like the native NetWare 'modules' command.

/P: (optional). pause on full screen.

Examples:

nlmlist

nlmlist /F /P

nlmlist | upper > list

Notes:

When both parameters are omitted, nlmlist only displays nlm names (one per line).
See Also:

exist nlm, noexist nlm

NOEXIST

Description:

NOEXIST checks whether a given object of a given type exists or not. If the object does not exist, this command displays and returns 0 (TRUE), otherwise 1 (FALSE). Noexist is mainly used with 'if then else', 'while' and the '? :' operator..

Syntax:

noexist object_type object_value

Parameters:

Both parameters are required.

object_type indicates the kind of object to find. Exist and noexist recognize the following object types:

DIR: directory

FILE: file

VOL: NetWare Volume (on current server)

DRIVE: Virtual NCPLUS drive or local DOS drive

SERVER: NetWare server (bindery format: 1 to 48 characters)

PSERVER: NetWare Print Server (bindery format: 1 to 48 characters)

NLM: NLM (loaded on current server)

LOGGED: Logged username (on current server)

NDSOBJ: NDS object name

BNDOBJ: Bindery object name (on local server)

value: Name of the object to find. For types FILE, DIR, and BNDOBJ, wildcard characters '?' and '*' are allowed. Other types require a complete valid name.

Examples:

if noexist drive d:

then copy *.txt c:; else copy *.txt d:

fi

#is equivalent to

copy *.txt ([noexist drive d:] ? "c:" : "d:")

if noexist server MAIN

then echo Server not found; else map q:=MAIN/sys:;fi

#is equivalent to

([noexist server MAIN] ? "echo Server not found" : "map q:=MAIN/sys:")

if noexist nlm monitor.nlm

then load monitor

else echo already loaded

fi

#is equivalent to

([noexist nlm monitor.nlm]? "load monitor" : "echo already loaded")

if noexist logged jdoe

then echo "he's out"

fi

if noexist file f:*.exe

then echo "No programs found on F:"

fi

if noexist pserver %x

then status=Active; else status=Inactive

fi

echo %Time " Print server "%x %status

Notes:

As for all NCPLUS commands, noexist return code is stored in the %? variable of the current shell. For other examples, see 'EXIST'.

See Also:

exist

NSET

Description:

nset displays the list of user local variables or system variables.

Syntax:

nset /s
Parameters:

/s: (optional). Displays the list of NCPLUS global system variables. When omitted, nset displays the user local variables of the current shell.

Examples:

nset

nset /s

Notes:

nset will not display shell variables like %$, %*, %0-%9.

When a user local variable 'PROMPT' exists, it value is used as the current shell prompt.

When a user local variable 'PATH' exists, it is used by the shell to search NCL and NCF batch files.

Example:

PATH="F:\;SYS:PUBLIC;G:\BATCHES;"

PATH must contain drives and/or directory names separated with ';' (semicolon). As the semicolon is also used as a command delimited, the value of PATH must be quoted.

See Also

'=' instruction and variables.

NSH

Description:

nsh (NCPLUS Shell) starts a new interactive shell.

Syntax:

nsh /NA | /A=filename

 or

 nsh command...
Parameters:

/NA: No Autoexec. (optional). Used to skip execution of the 'autoexec' batch file specified in NSH.INI. It can be a NCL or NCF file.

/A=filename: (optional) Used to execute an alternate 'autoexec' batch file before nsh displays its prompt.

command...: (optional). Any NCPLUS command or statement. Used to create a temporary subshell to execute a command. Command should be an internal command or NCL batch file. NCF files are always executed by a subshell.

Examples:

#creates a direct subshell (same stack and screen)

nsh

#creates a background (independent) shell

nsh &

direct subshell. Do not execute autoexec

nsh /na

background shell. Do not execute autoexec

nsh /na &

direct subshell. Execute alternate autoexec file

nsh /a=auto2.ncl

background shell. Execute alternate autoexec file

nsh /a=auto2.ncf &

nsh dir /s

#is equivalent to

nsh

dir /s ;exit %?

LOAD NSH SYS:NSH\MYPROC.NCF

LOAD NSH copy sys:system*.* vol1:save /s

Notes:

'nsh &' creates a background shell, with its own screen and stack. It has no direct relation with its parent shell (the shell executing 'nsh &'). It does not return a code to it, and it may be still active after its parent death (except if parent is PID 0 shell).

'nsh' creates a new subshell using its parent screen and stack. The parent shell is on hold (H) until its child terminates. The subshell returns a code in the %? variable of its parent.

It is possible to execute a NCPLUS command or statement from the native NetWare 'System Console Screen'. Use 'LOAD NSH command.....'. NSH is loaded to execute the command and will be unloaded upon completion.

See Also:

ps, kill, exit, compile

PAUSE

Description:

Pause waits for the user to hit a key. It is mainly used in batch files to suspend execution.

Syntax:

pause message
Parameters:

message: (optional). This message is displayed while pause waits for a key. If omitted, a default '*** Press any key to continue ***' message is displayed.

Examples:

pause
pause "Press any key, or CTRL+C to stop"

Notes:

See Also:

more, accept

PIDINFO

Description:

pidinfo displays a NCPLUS shell system information.

Syntax:

pidinfo pid

Parameters:

pid: (optional). PID number of the shell to check. If omitted, pidinfo displays information about the current shell.

Examples:

pidinfo

pidinfo %!

pidinfo 7

Notes:

Information displayed by pidinfo is mainly use for debugging and support:

Address: Shell memory address

TID, TGID: Shell Thread ID and ThreadGroup ID

PID, PPID: Shell and Parent shell Pids

Handicap and Load: current value of the Handicap and Load factor for the shell. (see prty).

Flag: R (Running) , K (waiting Keyboard) , H (on Hold) , or S (waiting Sync).

Min.Stack.left: Minimum available stack size since shell started.

ReducePt and ReduceSize: Address and Size of shell scratch pad.

MaxToken: Parser information.

Sync: Current value of the shell semaphore (see TRAP and SYNC)

DSUser: NDS internal ID.

FID, Connection and CurrentDrive: Server ID, Connection number and Current drive of the shell.

See Also:

kill, prty, ps, sysinfo

PRINT

Description:

Print sends one or more files to a NetWare print queue.

Syntax:

print filespec /Q=queue /S /NB /NFF /C=xx /T=xx /LP=xx /CP=xx
Parameters:

filespec: file(s) to print. Wildcard character '?' and '*' allowed.

/Q=queue: NetWare print queue name (bindery format).

/S: (optional). Also print files found in subdirectories.

/NB: (optional). No Banner.

/NFF: (optional). No Form Feed.

/C=xx: (optional). xx = Number of Copies. (default 1).

/T=xx: (optional). Tab Size. (default 1 Tab = 8 spaces).

/LP=xx: (optional). Lines per Page.

/CP=xx: (optional). Characters Per line.

Examples:

print *.txt /Q=HP_LASER1 /NB /NFF

print myfile.txt /q=%myprintq

print news.txt /c=99

Notes:

The NetWare Print Queue name is in bindery format. If the queue is not on the local server, a login + map must be done to authenticate NCPLUS to the server holding the queue.

Print sends the file(s) unmodified to the print queue. The user must check that the corresponding printer handles the file format (ASCII, postscript, hpcl...)

See Also:

PROTECT

Description:

'protect' sets and unsets NCPLUS commands passwords. All NCPLUS internal commands can be protected by a different password, allowing the administrator to reduce or secure the NCPLUS command set. When an internal command is password protected, NCPLUS asks for its before executing it.

Syntax:

protect command_name old_pwd new_pwd

Parameters:

command_name: internal command name: dir, del, flag....

old_pwd: (optional) current command password. If the command has no password, use "" (empty string).

new_pwd: (optional) new password for the command. To remove a password, use "" (empty string) as the new password.

old_pwd and new_pwd must be both present or omitted. When omitted, protect will prompt for old and new password.

Examples:

#remove the "mypwd" logout password

protect logout mypwd ""

#set del password to "superdel"

protect del "" superdel

#change del password from "superdel" to "supersuperdel"

protect del superdel supersuperdel

#set xdel password to "xyz"

protect xdel "" xyz

Notes:

Passwords can be any string less than 20 characters.

When an internal command is password protected, NCPLUS prompts for its password. If the entered password is correct, the command is executed, otherwise it is skipped.

It is also possible to include a command password at the command line or in a batch file, so NCPLUS will not ask for it. The command must be preceded by its password, delimited with a pair of ' ` ' (grave accent).

Example:

#assuming current password for logout is "mypwd"

`mypwd` logout

#will execute logout without interruption.

This feature is useful to protect commands included in compiled batch files (NCL). Using protect + compiled batch files allows the administrator to build procedures that cannot be executed step by step or manually, unless the user knows the password(s).

Passwords stored in NCL files are never displayed, even when running in debug mode.

Passwords are not saved when NCPLUS is unloaded. The NCPLUS 'startup' optional batch file can be used to set passwords every time NSH.NLM is loaded. (see NSH.INI).

Example:

1°) Create a file PWD.NCF containing the following lines:

protect del "" mydel <cr>

protect xdel "" superdel <cr>

protect logout "" nologout <cr>

protect login "" never <cr>

`never` login jdoe <cr>

2°) Compile PWD.NCF:

compile pwd.ncf

3°) Delete or store PWD.NCF in a safe location.

4°) Add the following line (or equivalent) in the [Initialization] section of NSH.INI:

Startup=SYS:\NCPLUS\PWD.NCL

5°) When loaded, NCPLUS will execute PWD, and will set passwords to del, xdel, login and logout. NCPLUS will then log as user 'jdoe'. At this point, users will not be able to logout or login with another user name, and will not be able to delete files and directories.

See Also:

cmdlist, compile

PRTY

Description:

PRTY (PRioriTY) updates and/or displays the handicap and load factor values of a given shell (PID).

Syntax:

prty pid /H=xxxx /L=yyy
Parameters:

pid: (optional). Shell PID number. If omitted, prty will use the current shell PID.

/H=xxxx: (optional) New handicap value, 0 <= xxxx <= 9999

/L=yyy: (optional) New load factor, in milliseconds, with 0 <= yyy <= 200

When both /H and /L are omitted, prty displays the current values.

Examples:

prty 5 /L=2

prty 0 /H=5000 /L=1

prty %pid /H=%handicap

prty

prty 2

Notes:

Handicap and Load Factor are local to each shell. Every shell may have different values.

The Handicap value corresponds to a number of 'threadswitches'. It indicates the number of threadswitches a shell will have to wait before it can go back to the NetWare thread 'run queue'. It has not a visible impact on NCPLUS performances, but a positive Handicap value guarantees that other nlms will have an equal chance to get CPU time.

The Load Factor acts directly on NCPLUS execution speed. When this value is positive for a shell, the NCPLUS HeartBeat daemon will periodically suspend the shell for the specified number of milliseconds. A load factor of 5 is really enough to dramatically slow down a shell. When a shell has a load factor greater than 2 or 3, it will not take more than 2 or 3% of the server CPU time.

Remember that Handicap and Load Factors have an impact on RUNNING shells. Shells waiting for input ('K' status), on hold ('H') or waiting for sync ('S') do not take any CPU time, as there are not in the run queue.

A default value can be set for Handicap and Load Factor in NSH.INI. A subshell or background shell inherits the values from its parent.

The current values of Handicap and Load Factor can be found in the %HCAP and %LOAD system variables.

See Also:

ps, pidinfo, sysinfo, %LOAD and %HCAP

PS

Description:

PS (Process Status) displays the list of all NCPLUS active shells and background commands.

Syntax:

ps /P
Parameters:

/P: (optional). pause on full page.

Examples:

ps

ps > liste

ps /p

Notes:

For each shell/command, ps gives the following information:

PID: Shell Process ID. In the list, the line beginning with a '*' before the PID corresponds to the current shell (the one executing 'ps').

PPID: Parent PID. PID of the parent shell. -1 indicates the shell has no parent (shell PID 0) or that it has been started by the scheduler.

Hdcp: Handicap current value.

Load: Load Factor current value.

F: (Flag). Shell Status:

- 'K': waiting Keyboard

- 'H': on Hold, waiting for subshell to terminate

- 'R': Running, executing a command

- 'S': waiting Sync, generated by a trap or 'sync' command from another shell or call back procedure

Start-Time: Shell creation date and time

Name: command name or 'nsh'.

NCPLUS daemons (HeartBeat, Message, Player, Scheduler) do not appear in the ps list.

See Also:

nsh, '&', kill, sync, trap, pidinfo, %$, %@, %PIDLIST

PURGE

Description:

purge removes definitely deleted files like the NetWare PURGE.EXE utility.

Syntax:

purge directory /S /V /I
Parameters:

directory: (optional) Name of the directory where deleted files must be purged. When omitted, the current directory is purged.

/S: (optional) Also purge deleted files in subdirectories.

/V: (optional) Verbose. Display purged filenames.

/I: (optional) Ignore errors (continue).

Examples:

purge

purge SYS: /s

purge sys: /s /v

purge F:\DATA

Notes:

After a login, the NDS user must have sufficient rights to execute this command.

See Also:

volinfo, %VOLPUR

RD

Description:

rd removes an empty directory on a NetWare volume or the local server DOS partition.

Syntax:

rd directory

Parameters:

directory: name of the directory to delete.

Examples:

rd C:\TMP

rd f:toto

rd %x

Notes:

The directory must be empty.

After a login, the NDS user must have sufficient rights to execute this command.

See Also:

del, md, cd

REN

Description:

ren renames files or directories on NetWare volumes or the local server DOS partition.

Syntax:

ren old_name new_name

Parameters:

old_name: Current file or directory name ('?' and '*' allowed).

new_name: New file or directory name ('?' and '*' allowed).

Examples:

ren file.old file.new

ren c:\autoexec.old c:\autoexec.bat

ren *.txt *.bak

ren file???x.zzz *.yyy

Notes:

After a login, the NDS user must have sufficient rights to execute this command.

ren can be used to move files when source and destination directories are on the same NetWare volume.

Example:

map f:=sys:public

map g:=sys:tmp

ren f:*.pdf g:*.pdf

See Also:

copy, dir, del

RIGHT

Description:

right is equivalent to the BASIC 'RIGHT$' function. It displays the n last characters of a string.

Syntax:

right string number

Parameters:

string: Character string (literal, variable, substitution operation).

number: number of characters (from right) to be extracted from string and displayed. 'number' must be less or equal to the total number of characters in the string.

Examples:

right "Telephone" 5

#or

right Telephone 5

#displays 'phone'

a="[0012beca][001b6cfe38c6]"

echo -n "Node Address node = "[right %a 14]

if test ([right %file 4] == '.EXE')

then flag %fichier +sh +ro; fi

Notes:

See Also:

left, mid, word

RIGHTS

Description:

rights displays the list of effective access rights granted to the current shell in a given NetWare drive or directory.

Syntax:

rights directory | drive

Parameters:

directory | drive: (optional) directory name or NCPLUS virtual drive letter. If omitted, rights displays the effective access rights in the current directory/drive.

Examples:

rights

rights f:

rights sys:

echo %RIGHTS

Notes:

The displayed rights are the effective rights of NCPLUS shells in the directory. When NCPLUS is not logged in, all shells have all rights in all directories of the local server.

The right list is a string containing the following abbreviations:

- S: Supervisor

- R: Read

- W: Write

- C: Create

- E: Erase

- M: Modify

- F: File scan

- A: Access

The NCPLUS %RIGHTS system variable contains the same string.

See Also:

flag, dir, login, %RIGHTS

SCHEDULE

Description:

Schedule starts or stops the NCPLUS 'Scheduler' daemon, and adds or removes jobs from/to the schedule list. A 'job' can be any command, statement, source or compiled batch file. Jobs can be scheduled to run at a given frequency, date, time or period.

Syntax:

schedule on /NS /L= logfile

schedule off

schedule list /f
schedule add command /h=hh /mn=mn /md=jj /wd=jour /mo=mm
schedule cancel number | 'ALL'
Parameters:

on: Start the 'Scheduler' daemon.

/NS: (optional, only with 'on'). Start the scheduler without a control screen. if omitted (default), a new control screen is created.

/L=logfile: (optional, only with 'on'). Start the scheduler and open a log file. The log file will contain the same information displayed on the control screen.

off: Stop the 'Scheduler' daemon. If the job list is not empty, all jobs are removed from the list. Jobs currently running are not stopped.

list: Display the job list. '/f' display a detailed job list.

add: Add a new job in the job list. 'command' may be any valid NCPLUS command, statement or batch file (NCF or NCL). If the command contains space characters (like spaces between the arguments), the whole command must be quoted.

The 'add' option takes the following optional arguments:

/h= : Job start Hour. (0-24)

/mn=: Job start Minute. (0-59)

/md=: (Month Day) Job start day in the month. (1-31)

/wd=: (Week Day) Job start day in the week: 0-6 or 'sun', 'mon', to 'sat'.

/mo=: (Month) Job start month in the year: 1-12 or 'jan', 'feb' to 'dec'.

When no start argument is given, the job will scheduled every minute, 24 hours a day, 7 days a week, all year long.

cancel: removes the job 'number' from the scheduler job list. 'number' can be found using 'schedule list'. The argument 'ALL' removes all jobs from the list.

Examples:

stop scheduler

schedule off

start scheduler with no screen or log file

schedule on /NS

start scheduler with a log file and no screen

schedule on /NS /L=F:\cron.log

start scheduler with a log file and screen

schedule on /L=\ETC\cron.log

add 'backup.ncf f: jdoe xyz' to job list to be executed

at 1:00 AM

schedule add "backup.ncf F: jdoe xyz" /mn=0 /h=01

remove job 3 from the schedule list

schedule cancel 3

remove all jobs from the schedule list

schedule cancel all

add 'dir' to the job list to be executed

every 15 minutes from monday to friday

schedule add "dir \ /s > \%$.txt" /mn=0,15,30,45 /wd=1-5

add 'xyz' to the job list to be executed

at midnight every first friday of the month

schedule add xyz /mn=0 /h=0 /md=1-7 /wd=5

save current job list in a file

schedule list > list.job

schedule a user entered command to be executed

at a user entered time (hh:00)

schedule add [accept "Cmd : "]/mn=0 /h=[accept "Hour : "]

add a command list (commands separated with ';')

to be executed at midnight.

schedule add "map q:=srv1/sys:; purge q: /s" /h=0

Notes:

When the 'Scheduler' daemon is started with 'schedule on' or using NSH.INI, a control screen is created by default. A new line is printed on this screen every time a job is scheduled. The screen is destroyed when the daemon is stopped. You can start the scheduler without control screen with the 'schedule on /ns' option.

The same information can stored in a log file with the 'schedule on /l=logfile' option.

Scheduler is activated once every minute. When a command is added to the job list with no schedule information, the command will be executed every minute.

/mn, /h, /md, /wd, /mo may have multiple comma separated values (no space!), or a sequence of values written as 'xx-yy', 'xx-' or '-yy', where 'xx is the first possible value and 'yy' the last. 'xx' and 'yy' are numeric values.

However, /wd and /mo accept numeric values or word abbreviations like:

for /wd: sun, mon, tue, wed, thu, fri, and sat for Sunday (0) to Saturday (6)

for /mo: jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec, for January (1) to December (12).

When a schedule parameter like /mn, /h, /md, /wd, or /mo is omitted, the scheduler assumes it takes ALL possible values. When a parameter is specified, it takes ONLY the given values.

Examples:

(nothing)
every minute of every hour, every day of the week, all weeks in the month and all months of the year

/mn=0,15,30,45
every 15 minutes, starting at HH:00

/h=0 /mn=0 /wd=5 /md=1-7
at midnight (00:00), only the first Friday of every month

/mn=0,5,10,15,20,25,30,35,40,45,50,55 /h=9-18 /wd=1-5
Every 5 minutes, from 9:00 to 18:00, Monday to Friday

/h=13 /mn=13 /wd=5 /md=13
At 13:13, Friday 13th only

/mn=0 /h=18-
Every day, every hour (at HH:00), from 18:00 until midnight

/mn=0 /h=12 /mo=feb /md=29
At noon, every February 29th (!!)

/mn=0 /h=-9
Every minute, from 00:00 to 9:00 am

When current time matches a job scheduling information, the scheduler daemon creates a new background shell to execute the corresponding job command. Variables %0 to %9 are set to the job initial parameters. Shells created by the scheduler have no parent (PPID = -1).

Up to 32 jobs can run at the same time. When a job takes more time to execute than its scheduling interval (i.e the time between 2 executions), it is not restarted. It will be restarted at its next scheduled time only if its previous instance is terminated.

Background commands created by the scheduler can be stopped with 'kill', or by hitting <CTRL+C> on their virtual screen/keyboard (unless disabled by 'ctrl').

Background commands created by the scheduler have a special user local variable '%JOB' containing their job # in the scheduler list.

IMPORTANT! A LOGIN or LOGOUT command stops ALL running shells, ('R' status), including background commands created by the scheduler.

See Also:

NSH.INI, ps, kill, nsh

SCREEN

Description:

The 'screen' command has several options to manage the local NetWare server virtual screens. It can be used to check whether a screen exists or not, to test for a given string on any screen, to switch the displayed screen, etc.

Screen handles all NetWare screens created on the local server, including the System Console and other Novell NLMs screens.

Syntax:

screen list /NO /V
screen eval screen_name string

screen find screen_name

screen goto screen_name

screen dup screen_name

Parameters:

screen_name: Name of a NetWare screen. The name of any NetWare screen is displayed at the top of the screen when hitting <ALT>. Like 'keyplay', 'screen' accepts partial screen names. When a screen name contains spaces or NCPLUS separators, it must quoted. Screen names are case insensitive.

list: Display the list of screens existing on the local server. List includes number and name of screens.

/NO:(optional, with 'list' only). Only display screen name (no number);

/V: (optional, with 'list' only). Verbose. Display screen status information.

eval: search for 'string' on the 'screen_name' screen. 'string' must match exactly the string (case sensitive). The string can be anywhere on the given screen. If the string contains separators like spaces, it must be quoted. 'screen eval' returns 0 (TRUE) in %? if string is found, otherwise it returns 1 (FALSE).

find: check whether 'screen_name' exists or not on the local server. 'screen find' returns 0 (TRUE) in %? if 'screen_name' exists, otherwise it returns 1 (FALSE).

goto: Change the current (active) screen to 'screen_name'. It has the same effect as hitting <ALT+ESC> until the choosen screen is displayed.

dup: make a copy of 'screen_name' on the current screen. This option should be normally used with output redirection (ex: 'screen dup Console > hardcopy').

Examples:

screen list

scr="Netware 4.10 console monitor"

screen find %scr

if test (%?==0)

then screen goto %scr

else echo "Screen does not exist"

fi

screen goto "System Console"

#is equivalent to

screen goto System

#or

screen goto Console

#The following example shows how to check for

a successful NetWare 'unbind' console command

!unbind ip from ether_II

wait 5

screen eval "System Console" "protocol unbound"

if test (%?===0)

then echo "IP successfully unbound from ether_II"

else beep; echo "IP is still binded"

fi

This example shows how to print a hardcopy of MONITOR

screen dup "Console Monitor" > monitor.txt

print monitor.txt /q=HP_QUEUE

Notes:

Screen accepts incomplete screen names. 'screen_name' can be any substring of the full screen name, like 'm conso', 'syst', or 'sole' for 'System Console'.

Non-switchable screens (debugger, screen save, alternate console, etc.) are not visible and can't be used with the screen command.

With 'screen eval', the string to find may start on one line and finish on the next. It is not necessary to include a <cr> in the string argument.

'screen dup' makes a copy of a screen. The copy is a 2050 characters string, built from 25 lines of 80 characters each, separated by a carriage return + line feed. The <cr><lf> characters are inserted by the screen command. There are necessary for the printers to print a correct 80 x 25 hardcopy. When 'screen dup' is not redirected to a file, the <cr><lf> generate a blank line between the original screen lines.

See Also:

print, keyplay, F1 to F10, PGUP, PGDOWN function keys.

SEND

Description:

This command sends a short message to one or more users connected to the current server.

Syntax:

send message TO userlist | connection_list | ALL /V
Parameters:

message: string. Total string length should not exceed 58 characters (including spaces).

userlist: List of NDS usernames separated by a single space.

connection_list: List of connection numbers separated by a single space.

ALL: send the message to all users connected to the current server.

/V: (optional). show the list of users who have received the message.

Examples:

send "Logout NOW!" TO ALL

send It's %TIME: Server down in %x minutes TO paul

send "Pls call me at" %ext to 1 6 paul 3 jack /V

Notes:

On workstations, message reception can be disabled with the NetWare 'SEND /A=N' utility.

See Also:

userlist

SEQ

Description:

SEQ (sequence) displays a list of integer values, separated by a space or <cr>. This command is mainly used with the 'for in' statement, to create large loops.

Syntax:

seq start_nb end_nb /N
Parameters:

start_nb: First number of the list. It must be a integer (positive, negative or null).

end_nb: Last number of the list. It must be a integer (positive, negative or null).

/N: (optional). Numbers will be separated with <cr>. (default: space)

Examples:

#display numbers from -1000 to +1000

seq -1000 +1000 /N

for i in [seq 1 1000]; docommand list.....; done

#Creating empty files

max=[accept "How many files? "]

if test (%max <= 0 || %max > 9999)

then

echo "Incorrect value "

else

for i in [seq 1 %max]

do

echo -n > FILE%i.DAT

done

fi

Notes:

When start_nb is greater than end_nb, the list is in descending order.

Increment is always 1 or -1.

See Also:

for in

SETPASS

Description:

SETPASS (SET PASSword) updates a NDS user password. It can be used only after a login.

Syntax:

setpass /U=user_name

Parameters:

/U=user_name: (optional) Name of the NDS user whose password must be updated. If omitted, setpass tries to change the password of the NCPLUS user.

Examples:

setpass

setpass /u=paul

setpass /u=.cn=paul.ou=dev.o=acme

setpass /u=%userName

Notes:

Setpass can be used only when NCPLUS is authenticated to NDS, after a 'login' command.

When used to change the current NCPLUS user password, setpass will ask for the old password.

When used to change another user password, the old password is not required. The NCPLUS NDS user must have sufficient rights to execute this command.

See Also:

login, logout

SIZEOF

Description:

SIZEOF computes and displays the size (in number of chars) of its single argument.

Syntax:

sizeof string

Parameters:

string: any string, variable or substitution operation.

Examples:

sizeof ABCD

#is 4

sizeof %user

sizeof (abcd + efgh)

#is 8

a=[accept "Enter a string: "]

echo This string contains [sizeof %a] characters.

Notes:

See Also:

mid, left, right, word

STAT

Description:

STAT retrieves and displays specific file or directory information.

Syntax:

stat filename|dirname /a /s /o /f /t /b /md /mt /cd /ct
Parameters:

filename or dirname: Name of the file or directory to check.

All other parameters are optional, but at least one must be present.

/a:
Last access date

/s:
Size in bytes (for files).

/o:
owner name (NDS format)

/f:
flags and status

/t:
type: 'FILE' or 'DIR'

/b:
Last backup date

/md:
Last update date

/mt:
Last update time

/cd:
Creation date

/ct:
Creation time

Examples:

a=[accept Name?]

echo %a is a [stat %a /t]. Size=[stat %a /s] bytes

LastAccess=[stat SECRET.DOC /a]

echo Last access to SECRET.DOC: %LastAccess

a=[accept Name?]

echo %a updated [stat %a /md] at [stat %a /mt]

Notes:

Stat displays the information as required by the order of its arguments, while 'dir' has a fixed order. Flags and status are shown like with 'flag' or 'dir'. The date format is controlled by the 'DateFormat' parameter in NSH.INI.

See Also:

exist, noexist, dir

SYNC

Description:

SYNC suspends or resumes execution of a shell, according to its current semaphore value. Each NCPLUS shell has a semaphore, that can be updated by all other shells.

Syntax:

sync

sync pid
sync reset

Parameters:

pid: PID # of the target shell. This shell semaphore will be incremented.

reset : reset the current shell semaphore to 0.

Examples:

#

#Simple shell synchronization example

#

#This is pid 2 shell screen

echo waiting for sync...; sync; echo Continue...

#This is Pid 0 shell screen

sync 2; echo "Pid 2 is now unlocked"

#

Skeleton of a copy automat

#

This is the automat shell (pid 2)

go to a \queue directory

cd \queue

reset semaphore to 0

sync reset

wait for ever on the semaphore

while true

do

first sync will lock (0 - 1 = -1)

sync

shell unlocked. Read file 'source' and file 'dest'

into %src and %dst

src=[type source]

dst=[type dest]

do the copy and save result in a log file

copy %src %dst >> copy.log

delete 'source' and 'dest' parameters

del source

del dest

and go back to wait for sync

done

This is the automat user(any other pid)

echo [accept "Source? "] > \queue\source

echo [accept "Destination? "] > \queue\dest

sync 2

echo "Copy command sent to the automat"

Notes:

The initial value of a shell semaphore is 0.

When 'sync' is executed by a shell X, its semaphore is decremented. If the semaphore value is < 0, the shell is blocked: it is in 'sync mode' ('S' status in ps). Execution is suspended (<CTRL+C> can still unblock it).

When another shell Y executes a 'sync x' command, it increments shell X's semaphore. If the new value is >= 0, shell X resumes execution and goes back to 'run mode' ('R' status in ps). If the value is still <0, shell X is still suspended.

Executing 'sync x' for a shell X not waiting on sync will still increment its semaphore. Next time shell X will execute 'sync', it will not block, as its semaphore is still >= 0.

Using 'sync reset', a shell can reset its semaphore to 0.

A shell X may be on hold ('H' status in ps), while a subshell executes a source .NCF batch file. If a shell Y runs 'sync x', shell X's semaphore AND its child shell semaphore will be incremented.

Shells have only one semaphore, also used by the 'trap' command.

See Also:

trap

SYSINFO

Description:

This command gives some information about the NCPLUS global parameters.

Syntax:

sysinfo /d
Parameters:

/d: (optional). Display detail information.

Examples:

sysinfo /d

sysinfo > %$.nfo

Notes:

Sysinfo is used for troubleshooting and support. It is also useful to check the current value of some parameters initialized in NSH.INI.

See Also:

pidinfo

TEST

Description:

This command returns 0 (TRUE) or 1 (FALSE) in %?, depending on the value of its argument. Test is mainly used in the 'if then else' statement, to test a string, variable, logical or arithmetic operation.

Syntax:

test argument

Parameters:

argument: string, variable, any () or [] substitution operation, or any combination of these elements.

Examples:

test a; test %variable

test (1+3); x=%?

test (%var == 3); echo %?

if test (%var == "");then echo "empty or absent"; fi

test (%var > 5 && %var < 10); echo %?

if test (%TIME > "18:00:00"); then echo "too late!!"; fi

if test (%freespace < 10000)

then echo "not enough space"

fi

Notes:

The table below shows the return values, according to the 'test' argument type.

Argument
Returns 0 (TRUE) when
Returns 1 (FALSE) when

alphanum. string
non empty (!= "")
empty (="")

numeric string
= 0
!= 0

 logic/arithmetic operation ()
relation is true

or result = 0
relation is false
or result !=0

output substitution operation []
non empty result (!="")
empty result (="")

See Also:

if then else, '? :' operator

TLIST

Description:

TLIST displays a file/directory trustee list, or the list of files and directories for which trustee rights have been granted or revoked for a given user.

Syntax:

TLIST file_dir /S /P /I /U=user

Parameters:

file_dir: File or directory name. Wildcard characters '*' and '?' allowed. If omited, tlist uses the current directory.

/S: (optional). Include subdirectories.

/P: (optional). Pause on full page.

/I: (optional). Include current directory in the search, even when 'file_dir' corresponds to another file or directory.

/U=user: (optional). When specified, tlist searches only for trustee rights granted to 'user'. 'user' must be a NDS username.

Examples:

tlist

tlist /S

tlist *.txt /i

tlist F:\ /U=jdoe

tlist /s /u=.paul.dev.acme

tlist vol1: /p /s

Notes:

See Also:

TMPDIR

Description:

This command displays and updates the value of the special NCPLUS 'TmpDir' parameter. This parameter contains the name of the directory where NCPLUS temporary files must be created.

Syntax:

TMPDIR directory

Parameters:

directory: (optional). Name of the directory (on LOCAL server) where NCPLUS must create its temporary files. If omitted, tmpdir displays the current value of 'TmpDir'.
Examples:

tmpdir

tmpdir sys:tmp

tmpdir f:

tmpdir %mydir

tmpdir sys:\ncplus

Notes:

The current NCPLUS user must have Read, Write and Erase rights on the directory. When NCPLUS is not logged in (connection 0), all shells have all rights on all local server volumes.

This command should be only used when a message like "TMPFILE error on srv/vol:dir\xxx.TMP (yyyy)" is displayed on the NetWare console screen.

‘TmpDir’ is NOT a variable. It can only be updated with the 'tmpdir' command, or in NSH.INI. It is recommended to set TmpDir to a directory where all potential NCPLUS NDS users have RWE rights. It is also recommended to flag this directory 'Purge Immediate'.
See Also:

sysinfo, nsh.ini (Initialization section)

TRAP

Description:

TRAP captures pre-defined NetWare events in special queues. Once an event has been captured, a shell can read the queue and process the event, using special system variables.%TRAPDATE and %TRAPTIME will contain the date and time of the event, %TRAPTYPE the type of event, and %TRAPINFO the event specific info.

Syntax:

trap

trap start event_list

trap stop event_list | ALL
trap sync /v
Parameters:

event_list: one or more event names, separated with a space.

The following table describes the 'trap' pred-defined events and the value of %TRAPINFO for each of them.

 %TRAPTYPE
Event
%TRAPINFO

VOL_MOUNT
NW volume mounted
Volume name

VOL_DISMOUNT
NW volume dismounted
Volume name

NLM_LOAD
New NLM loaded
NLM name

NLM_UNLOAD
NLM unloaded
NLM name

CLR_CONN
Connection cleared
Connection number

LOGIN
User Login
User name

LOGOUT
User Logout
User name

NEW_OBJ
NDS object created
NDS object name

DEL_OBJ
NDS object deleted
NDS object name

REN_OBJ
NDS object renamed
NDS object new name

CHG_TRST
File or directory trustee changed
filename or dirname +
'ADDED' or 'REMOVED' +

trustee name + new trustee rights (added)

CHG_SEC
User security equivalence changed
user name +
'ADDED' or 'REMOVED'
+ equivalent user name

NEW_BND
New Bindery object
Bindery object name

DEL_BND
Bindery object deleted
Unique ID (8 hex digits)

start: start to capture events defined in event_list.

stop: stop capturing events defined in event_list. ALL stops all events capture.

sync: wait for an event to occur. The shell is suspended until one of the events defined in 'trap start' occurs.
/v (optional): only with 'sync': Shows the last event captured by trap sync.

When trap has no parameters, it displays the status of all events and some additional information like:

- number of captures per event,

- capacity of each event queue,

- number of overflows (missed events),

- PID # of shell waiting on a trap sync, etc.

Examples:

#Procedure to log events on NDS objects

#create a new log file

echo "NDS Log file started" %DATE at %TIME > log.nds

start to capture the 3 NDS events

trap start NEW_OBJ DEL_OBJ REN_OBJ

endless loop

while true

do

wait for an event

trap sync

event captured. Log information in file

echo %TRAPDATE %TRAPTIME: %TRAPTYPE %TRAPINFO

done >> audit.txt

Waiting for a nlm load

trap start NLM_LOAD

trap sync

echo NLM %TRAPINFO has been loaded at %TRAPTIME

trap stop all

Waiting for a Truste change

trap start CHG_TRST

trap sync

dir=[word 1 %TRAPINFO]

verb=[word 2 %TRAPINFO]

trustee=[word 3 %TRAPINFO]

rights=[word 4 %TRAPINFO]

echo %rights have been %action on %dir for user %trustee

trap stop CHG_TRST

Notes:

An event must be captured and handled by the same shell. It is not possible to start an event capture in one shell to wait for it in another. However, different shells can capture and wait for different events.

'trap' uses the same semaphore than the 'sync' command.

Each type of event is stored in a specific 'first level' event queue. Each queue has a different capacity, based on the event probability and information size. In rare occasions, some events may be lost. The same may happen when the procedure taking care of an event is too long or too slow, and is not able to empty the queue fast enough. In that case, the oldest events are lost (overwritten) first.

'trap' with no parameter will show the size of all event queues and how many events have been lost.

Each shell has its own 'second level' queue, containing all events it traps. This queue is filled with events coming from the 'first level' event queues. The 'TrapQueueSize' parameter (see NSH.INI) can be used to increase the size of this second level shell queues. It can help solving overflow problems when a single shell handles many different events.

Trap queues (first and second level) are only allocated when a 'trap start' command is executed. 'trap stop' will stop capture and free the queues memory.

the 'word' command can be used to get the different elements of %TRAPINFO for the CHG_SEC and CHG_TRST events. (see example).

See Also:

sync, word

TRUE

Description:

TRUE does nothing except returning 0 (TRUE) in %?. It is mainly used to create endless while loops.

Syntax:

true
Parameters:

None

Examples:

true; echo %?

while true

do

wait 1

echo -r -n %Time

done

Notes:

See Also:

while statement

TYPE

Description:

Type reads a file and displays its contents on the current shell output stream (screen). It is similar to the DOS type command, and handles files located on NetWare volumes or the local server DOS partition.

Syntax:

type filename /P
Parameters:

filename: Name of file to read.

/P: (optional) pause on full screen.

Examples:

type [accept "Filename? : "] /p

type f:autoexec.ncf /p

type f:autoexec.ncf | more

type \web\docs\index.htm

type g:text.low | upper > f:text.up

type C:\config.sys

Notes:

See Also:

more

UPPER

Description:

'upper' is a NCPLUS shell filter replacing lowercase characters with uppercase.

Syntax:

upper string

Parameters:

string: (optional) string: constant, variable, or substitution operation. If omitted, lower reads characters from its input stream (until end of file or <CRTL+Z>).

Examples:

type g:lower | upper > x:upper

upper < g:one > two

name=[upper [accept "Name? "]]

Notes:

lower (and upper) do not generate a final <cr>.

See Also:

lower

USERLIST

Description:

Userlist shows the list of users connected on the current server.

Syntax:

userlist /p /q
Parameters:

/p (optional): pause on full screen.

/q (optional): display only names (one name per line).

Examples:

userlist

for i in [userlist /Q]

do

echo %i is connected to server %SRV

done

Notes:

The current server is the server corresponding to the current NCPLUS virtual drive from which the command has been called.

See Also:

chown, send

VOLINFO

Description:

Volinfo displays NetWare volume information like total space, used space, and various other parameters.

Syntax:

volinfo volume

Parameters:

volume (optional): NetWare volume name (including ':'). If omitted, volinfo reads information from the current volume (current drive).

Examples:

volinfo

volinfo vol1: > info.vol

Notes:

Most of the information displayed by volinfo is also available in the %VOL... global variables.

See Also:

%VOL... variables

WAIT

Description:

Wait suspends a shell execution for a given number of seconds.

Syntax:

wait nb_secs message

Parameters:

nb_secs: integer value. Number of seconds to wait.

message: (optional): Message to be displayed by the command while waiting.

Examples:

wait 10

!reset router

wait 5 "Please wait while router is resetting..."

Notes:

A wait can be stopped with <CTRL+C>.

See Also:

WHOAMI

Description:

whoami displays the name of the NCPLUS current user.

Syntax:

whoami
Parameters:

None

Examples:

whoami

if test (%USER != "")

then echo Current NCPLUS user is %USER

else echo You are not logged in

fi

Notes:

When NCPLUS is not logged in (using 'login'), whoami displays 'You are not logged in', otherwise, it displays the NCPLUS NDS user name.

The global variable %USER also contains the NCPLUS NDS user name (empty when not logged in).

See Also:

login, logout, %USER

WORD

Description:

Word extracts a space/tab delimited token (word) from a string.

Syntax:

word nb string
Parameters:

nb: Word number. First word of a string is 1.

string: string from which a word must be extracted.

Examples:

word 1 "This is a string"

will display "This"

word 3 "This is a string"

will display "a"

word 1 %VOLLIST

will display "SYS:"

a="forever seek can you disk clear a On"

b=""

for i in 8 7 6 5 4 3 2 1

do

b=(%b+[word %i %a]+ " ")

done

echo %b

#will display "On a clear disk you can seek forever"

Notes:

Word is useful to extract one word from a string or variable. You can use it to handle the %TRAPINFO variable (see example in 'trap').

See Also:

left, right, mid

XDEL

Description:

Xdel deletes files AND directories in a single pass. A complete directory structure can be deleted this way. Xdel runs on NetWare volumes and in the local server DOS partition.

Syntax:

xdel dir_name /V /F /A /I
xdel dir_name*.* /V /F /A /I
Parameters:

dir_name: name of the directory to delete.
.: (optional) Deletes the contents of the directory (including files and subdirs), but leaves 'dir_name'.

/F: (optional) Delete ‘Read Only’ files.

/V: (optional) Display file and dir names, as there are deleted.

/A: (optional) Automatic purge after deletion.

/I: (optional) Ignore errors (continue).

Examples:

xdel VOL1:BACKUP /F

xdel sys:\user\paul

xdel f:\netbasic

xdel srv2/prg:\tmp*.* /F /A

Notes:

WARNING: 'XDEL *.*' does not prompt for confirmation.
See Also:

del, rd

YESNO

Description:

yesno displays a 'y/n?' prompt and waits for user to enter 'y' or 'n'. The command will return 0 (TRUE) is answer is Yes and 1 (FALSE) if answer is No. Return code is stored in %?.

Syntax:

yesno a/b
Parameters:

a/b (optional). Alternate 'y/n' pair. To be used for yes/no questions in other languages (ex: 'o/n' for 'Oui/Non', 'j/n' for 'Ja/Nein', 's/n' for 'Si/No').
Examples:

echo Continue; yesno

if test (%?== 0); then echo "Ok, Continue"; fi

echo "Voulez-vous continuer"; yesno o/n

if test (%?== 0); then echo "D'accord, on continue"; fi

while {echo Continue; yesno}

do

any command list.....

done

Notes:

The last example shows how to use '{' and '}' to create a command list for a 'while' test: The return code of the "{echo Continue; yesno}" command list is the return code of the last command in the list. In this example, it is the return code of 'yesno'. It will be evaluated by 'while' for the loop control.

See Also:

echo, accept

VIII. USING THE PLAYER DAEMON WITH KEYPLAY.
This chapter describes the syntax, variables and keywords used to create script files played by the NCPLUS 'Player' daemon. The 'Player' daemon is started with the 'keyplay' command.

Keyplay simulates keyboard input on the NetWare server where NCPLUS is installed. Keyboard input can be directed to any NetWare virtual screen/keyboard, corresponding to any NetWare NLM or standard screen.

Keystrokes to be played back by 'keyplay' are stored in a script file, along with variables and keywords to control input direction, speed, etc. With keyplay, network administrators can pilot NLMs usually requiring operator input: The 'Player' daemon replaces the operator. Keyplay reads a script file sequentially until end of file, or until the user hits 'S' or <CTRL+C> on the NCPLUS shell screen executing the 'keyplay' command.
To start the daemon, use the 'keyplay' command from any NCPLUS shell:

keyplay script_file <cr>
where 'script_file' is the name of the file containing keystrokes, keyplay variables and keywords. Any keystroke combination can be played back, except <CTRL+ESC> and <ALT+ESC>, replaced with specific keyplay commands like '#SCREEN'. A script file is a text file, created and edited with any ASCII compatible editor (like EDIT.NLM). Printable characters are entered as there must be played back. Non printable characters to be played back are replaced with symbols like '\CR', '\ENTER', '\F1', '\SHIFT_F2', etc.

A script file also contains Keyplay variables and keywords. Variables and keywords are always entered in the script file preceded with the '#' sign at the beginning of a new line. Only one variable or keyword is allowed on a line.

Keyplay variables and keywords are used for:

- screen selection,

- play back speed control,

- definition of screen zones for tests,

- testing the presence of a string on a screen or a zone,

- conditional play back control,

- inserting NCPLUS variables in the input flow,

- making screen hardcopies, etc.

With Keyplay, you can load and unload any nlm, execute any NetWare console command, install new software, run menu oriented nlms while you're away, copy NetWare messages in log files, etc. Combined with the NCPLUS 'Scheduler' daemon, such operations can be executed at any time, period or frequency.

IMPORTANT: IT IS NOT RECOMMENDED TO USE THE SERVER KEYBOARD WHILE KEYPLAY IS RUNNING. ENTERING CHARACTERS FROM THE KEYBOARD WHILE A SCRIPT IS PLAYED BACK MAY GENERATE UNPREDICTABLE RESULTS (CORRUPTED INPUT).

VIII.1. KEYPLAY SCRIPT VARIABLES.

Keyplay uses special variables to control execution of script files.

NOTE:

1°) Keyplay script variables are NOT (!) NCPLUS shell variables. There are defined only while keyplay is running, and are used by the 'Player' daemon to control its execution.

2°) However, NCPLUS global and shell variables can be read by the 'Player' daemon. When a NCPLUS variable name is found in a script file, the daemon reads its current value and plays it back.

Some Keyplay script variables have pre-defined values, while others need to be initialized in the script file. A Keyplay script variable name always begin with the '#' character. '#' must be the first character of a new line in the script file. Each Keyplay script variable is defined on a separate line.

Valid examples:
#SPEED 10
#TIMEOUT_MSG 2000

Invalid Examples:
#SPEED=10

('=' not allowed)
#TIMEOUT_MSG2000

(missing space before value)
#SPEED 1000 #TIMEOUT_MSG 5000
(2 variables on 1 line)

Keyplay script variables can be updated anywhere in the script file. Keyplay commands using variables will use their last defined values (i.e. last preceding line in the script file referencing the variable).

The following pages describe all the Keyplay script variables and their usage.

#COORD_MSG

Description:

COORD_MSG contains the screen coordinates used by the #IF_MSG and #WAIT_MSG Keyplay commands. These two commands check whether a given string is displayed or not at the #COORD_MSG position on the current screen. The string must begin exactly at the row/column defined in #COORD_MSG. A NetWare virtual screen has 25 rows of 80 columns each.

Syntax:

#COORD_MSG row column
Parameters:

row: row number where the string must begin (first row=1, last=25).

column: column number where the string must begin (first col=1, last=80).

Default value:

#COORD_MSG 1 1

(Top left corner)

Example:

The following script checks for a string "Save File" at column 15 of row 8 on "Install screen". If found, Keyplay plays back 'Y(es) + enter' to confirm file save.

#WAIT_SCREEN Install Screen

#COORD_MSG 8 15

#IF_MSG Save File

Y\ENTER

#ENDIF

#COORD_WIN

Description:

COORD_WIN contains the screen coordinates used by the #TIMEOUT_WIN and #IF_WIN Keyplay commands. These two commands check whether a given string is displayed or not in the current screen zone (or window) defined by #COORD_WIN. The string can be displayed anywhere in the zone.

Syntax:

#COORD_WIN tlcr tlcc brcr brcc
Parameters:

tlcr: Top Left Corner Row (min=1, max = 25)

tlcc: Top Left Corner Column (min=1, max=80)

brcr: Bottom Right Corner Row (min=1, max=25)

brcc: Bottom Right Corner Column (min=1, max=80)

with tlcr < brcr and tlcc < brcc

Default value:

#COORD_WIN 1 1 25 80

(full screen)

Example:

This script looks for "protocol unbound from" string anywhere on the system console screen. If found, keyplay will try to bind ipx to a network board.

#SCREEN System Console

#COORD_WIN 1 1 5 80

#IF_WIN protocol unbound from

bind ipx to ne2000 net=12345789\ENTER

#ENDIF

#DEBUG

Description:

DEBUG contains the current DEBUG mode, 'ON' or 'OFF'. When Keyplay runs in debug mode (DEBUG = ON), each line of the script is printed on the System Console before it is executed and/or played back.

Syntax:

#DEBUG ON | OFF

Parameters:

ON: Set Debug mode ON.

OFF: Set Debug mode OFF.

Default value:

#DEBUG OFF
Example:

When Debug is ON, the script:

#SCREEN Edit Screen

Writing a line with EDIT.NLM\CR

will generate the following 2 lines on the System Console:

Command [SCREEN Edit Screen]

Playing < Writing a line with EDIT.NLM>

#LOG_FILE

Description:

LOG_FILE contains the Keyplay log filename. The Keyplay "#LOG" command writes messages in this file. The file must be created on the local server.

Syntax:

#LOG_FILE filename

Parameters:

filename: Full NetWare file path

NCPLUS virtual drives (F: to Z:) are not allowed here. However, the log file can be stored in the server DOS partition (C:).

Default value:

SYS:SYSTEM/SCREEN.LOG
Example:

This script writes some messages in 2 different Keyplay log files. It gives an example of using NCPLUS global variables %DATE and %TIME.

#SCREEN_LOG SYS:ETC\PLAYER.TXT

#LOG PLAYER.TXT Log file created \%DATE% at \%TIME%

#SCREEN_LOG VOL1:LOG.TXT

#LOG LOG.TXT Log file created \%DATE% at \%TIME%

#SPEED

Description:

SPEED contains the delay value (in milliseconds) used by Keyplay to wait between each keystroke. Updating #SPEED lets you adjust Keyplay input speed to the NLM you want to work with.

Syntax :

#SPEED value

Parameter:

value: delay in milliseconds.

Default value:

#SPEED 0
Example:

This scripts plays back keystrokes at different speeds.

#WAIT_SCREEN Edit Screen

#SPEED 0

This line is entered very fast.\ENTER

#SPEED 1000

And this one very slowly.\ENTER

#SPEED 100

This is an average input speed.\ENTER

#SWITCH

Description:

SWITCH is a boolean variable. When #SWITCH equals 'ON', Keyplay will display the current screen selected with the #SCREEN or #WAIT_SCREEN commands. When #SWITCH equals 'OFF', the displayed screen is left unchanged.

Syntax:

#SWITCH ON | OFF
Default value:

#SWITCH OFF
Example:

This script loads EDIT.NLM, MONITOR.NLM and INSTALL.NLM. Each corresponding screen will be displayed for 5 seconds. Finally, the 3 nlms will be unloaded.

#SWITCH ON

#SCREEN System Console

LOAD EDIT\CR

LOAD MONITOR\CR

LOAD INSTALL\CR

#WAIT_SCREEN Edit

#SLEEP 5000

#WAIT_SCREEN Monitor

#SLEEP 5000

#WAIT_SCREEN Install

#SLEEP 5000

#SCREEN System Console

UNLOAD EDIT\CR

UNLOAD MONITOR\CR

UNLOAD INSTALL\CR

#TIMEOUT_MSG

Description:

TIMEOUT_MSG contains the time-out value used by the Keyplay #WAIT_MSG command. This command waits for a given string to be displayed on the current screen (string coordinates defined in #COORD_MSG). If the string does not appear within the time-out period, Keyplay will stop on error 7.

Syntax :

#TIMEOUT_MSG delay
Parameter:

delay: delay in milliseconds.

Default value:

#TIMEOUT_MSG 1000
Example:

This script switches to the 'Rip Tracking' and waits 30 minutes for the string "IN [33000001:" to appear on line 1. If the string does not appear, it is probably because the server does not receive any RIP packets. If such a string does not appear within 30 minutes, Keyplay will stop, otherwise it will write a message on the console.

#SCREEN RIP Tracking Screen

#COORD_MSG 1 1

#TIMEOUT_MSG 1800000

#WAIT_MSG IN [33000001

#CONSOLE Server has received RIP broadcasts!

#CONSOLE Keyplay restarting...

#TIMEOUT_SCREEN

Description:

TIMEOUT_SCREEN contains the time-out value used by the Keyplay #WAIT_SCREEN command. This command waits for a given screen to be created, before switching to it. If the screen is not created within the time-out period, Keyplay will stop on error 7. The #WAIT_SCREEN command should be used instead of the #SCREEN command when the screen is created by a nlm currently loading.

Syntax:

#TIMEOUT_SCREEN delay
Parameter:

delay: delay in milliseconds.

Default value:

#TIMEOUT_SCREEN 5000

Example:

This script loads MONITOR.NLM and waits for the Monitor screen. If the screen does not appear within 10 seconds, Keyplay will stop. If the screen is created, keyplay will play a TAB character to expand the 'General Information' window of the Monitor screen.

#SCREEN System Console

LOAD MONITOR\CR

#TIMEOUT_SCREEN 10000

#WAIT_SCREEN Monitor Screen

\TAB

#TIMEOUT_WIN

Description:

TIMEOUT_WIN contains the time-out value used by the Keyplay #WAIT_WIN command. This command waits for a given string to be displayed anywhere in a screen window (defined by #COORD_WIN) on the current screen. If the string does not appear within the time-out period, Keyplay will stop on error 7.

Syntax:

#TIMEOUT_WIN delay

Parameter:

delay: delay en milliseconds.

Default value:

#TIMEOUT_WIN 1000

Example:

This script waits 30 seconds for the string "Unload print server?" to be displayed on the Print Server screen. If found, Keyplay enters 'Y'+<cr> to unload PSERVER, and prints a message on the console.

#SCREEN Print Server

#COORD_WIN 1 1 25 80

#TIMEOUT_WIN 30000

#WAIT_WIN Unload print server?

Y\ENTER

#CONSOLE Print Server unloaded at \%TIME%

VIII.2. USING NCPLUS VARIABLES IN KEYPLAY SCRIPTS.

NCPLUS variables can be included in a Keyplay script file. These variables may contain any text to be played back, and may also be used as Keyplay command parameters.

Keyplay can read all NCPLUS global system variables (%TIME, %DATE, %USER, etc.) and local variables of the running shell (the shell executing keyplay). Empty or non existing variables are ignored.

To use a NCPLUS variable in a keyplay script file, use the following syntax:
\%variable%

where 'variable' is the name of a NCPLUS global or local variable.
Examples:

#SCREEN Edit Screen

It is \%TIME%\cr

#SCREEN \%Myscreen%

VIII.3. KEYPLAY SCRIPT COMMANDS.

Keyplay script commands are stored in the same script file than variables and characters to play back. Like script variables, script commands begin with a '#' character and must be written at the beginning of a new line. Command parameters (if any) are written after the command name, separated with space(s).

NOTES:

The Keyplay 'CURRENT SCREEN' is the screen on which the 'Player' daemon is playing back a script file. The current screen is set by the #SCREEN and #WAIT_SCREEN commands.

The 'DISPLAYED SCREEN' is the NetWare virtual screen currently displayed on the server console screen. It may or may not correspond to the Keyplay current screen (see #SWITCH).

The following pages describe the Keyplay script commands. For each command, an example shows how to use the command.

#CONSOLE

Description:

#CONSOLE prints a message on the NetWare 'System Console' screen. It is not necessary to 'switch' to the console before using this command.

Syntax:

#CONSOLE Any message to be displayed on System Console

Example:

This script loads SBACKUP.NLM and warns the operator.

#SWITCH ON

#SCREEN System Console

load SYS:SYSTEM/BACKUP.NLM\ENTER

#WAIT_SCREEN Backup Screen

#CONSOLE BACKUP script in Progress.

#CONSOLE Do not touch the keyboard!!

#COPY

Description:

#COPY copies the current Keyplay screen in a file. (See also the 'screen dup' NCPLUS shell command).The current Keyplay screen is the last screen selected with the #SCREEN or #WAIT_SCREEN command.

Syntax:

#COPY filename

Parameter:

filename: Full NetWare file path or DOS filename.

Example:

This script makes a copy of the MONITOR.NLM main screen in a file.

#SCREEN Monitor Screen

#COPY SYS:SYSTEM/PSERVER1.LST

#GOTO

Description:

#GOTO jumps (forward or backward) to a label defined in the script file. Execution continues at the label. Labels are special lines beginning with ':'.

Syntax:

#GOTO label

Parameter:

label: label name. the ':' character must not be included.

Example:

This script waits for the string "End". While the string "Please Wait" is displayed, the script waits 1 second and tries again to check for "End". When "End" is printed, the script continues at the ":NEXT" label.

#COORD_MSG 5 1

:BEGIN

#SLEEP 1000

#IF_MSG End

#GOTO NEXT

#ENDIF

#IF_MSG Please Wait

#GOTO BEGIN

#ELSE

#CONSOLE Unexpected Message!

#GOTO FINISH

#ENDIF

:NEXT

#LOG End of procedure

:FINISH

#STOP

#IF_MSG [#ELSE] #ENDIF

Description:

#IF_MSG tests if a string is displayed on the current screen, beginning at the row/column defined in #COORD_MSG. If the string is found, execution continues at next line. If the string is not found, execution continues at the line following #ELSE (if an else part is included) or at the line following #ENDIF.

Syntax:

#IF_MSG string1

Commands and keystrokes executed if string1 is found...

#ELSE
Commands and keystrokes executed if string1 is found...

#ENDIF

or
#IF_MSG string1 \|| string2

Commands and keystrokes executed if string1 OR string 2 is found..

#ELSE
Commands and keystrokes executed if string1 AND string2 not found..

#ENDIF

Example:

This script plays the 'VOLUMES' command on the server console to check the mounted volume names. If volume 'VOL1:' or 'VOL2:' is not mounted, the script tries to mount 'VOL3:'

#SCREEN Console

CLS\CRVOLUMES\CR

#COORD_MSG 2 10

#IF_MSG VOL1 \|| VOL2

#GOTO VOLUMES_MOUNTED

#ELSE

MOUNT VOL3\CR

#ENDIF

:VOLUMES_MOUNTED

IF_WIN [#ELSE] #ENDIF

Description:

#IF_WIN tests if a string is displayed on the current screen, in the screen zone defined in #COORD_WIN. If the string is found, execution continues at next line. If the string is not found, execution continues at the line following #ELSE (if an else part is included) or at the line following #ENDIF.

Syntax:

#IF_WIN string1

Commands and keystrokes executed if string1 is found...

#ELSE
Commands and keystrokes executed if string1 is found...

#ENDIF

or
#IF_WIN string1 \|| string2

Commands and keystrokes executed if string1 OR string 2 is found..

#ELSE
Commands and keystrokes executed if string1 AND string2 not found..

#ENDIF

Example:

This script executes the "DISPLAY SERVERS" command on the server console, and cheks whether 'SRV1' or 'SRV2' server names are displayed. If there are not displayed, the script logs a warning message in the log file.

#SCREEN System Console

display servers\ENTER

#SLEEP 100

#COORD_WIN 1 1 25 80

#IF_WIN SRV1 \|| SRV2

#GOTO OK

#ELSE

#LOG One server is down!

#ENDIF

:OK

#LOG

Description:

#LOG writes a message in the Keyplay log file defined in #LOG_FILE.

Syntax:

#LOG Any message up to 1024 characters.

Example:

This script writes some messages in 2 different Keyplay log files. It gives an example of using NCPLUS global variables %DATE and %TIME.

#SCREEN_LOG SYS:ETC\PLAYER.TXT

#LOG PLAYER.TXT Log file created \%DATE% at \%TIME%

#SCREEN_LOG VOL1:LOG.TXT

#LOG LOG.TXT Log file created \%DATE% at \%TIME%

#REM

Description:

#REM is the comment (REMark) command used to include comments in a script file. Script lines beginning with '#REM' are not processed by Keyplay.

Syntax:

#REM Any comment string, up to end of line

Example:

This script includes some comments.

#REM Load MONITOR and waits 2 seconds

#SCREEN System Console

LOAD MONITOR \ENTER

#SLEEP 2000

#REM Now go to monitor screen and lock the keyboard

#WAIT_SCREEN Monitor

\DOWN\DOWN\DOWN\DOWN\ENTER\ENTER

#SCREEN

Description:

#SCREEN changes the Keyplay current screen. The 'Keyplay current screen' is the screen on which Keyplay plays back the script characters. All other commands following '#SCREEN' in the script file will access specified screen. The screen must exist when #SCREEN is executed. To switch to a screen created by a 'just loaded' nlm, it is recommended to use #WAIT_SCREEN instead of #SCREEN.

Syntax:

#SCREEN screen name

The screen name may be an incomplete name (i.e 'Console' instead of 'System Console').

Default (startup) screen:

System Console

Example:

This script loads MONITOR.NLM and locks the server keyboard (using MONITOR lock feature).

#SCREEN System Console

LOAD MONITOR\ENTER

#WAIT FOR MONITOR TO LOAD.

#SLEEP 5000

#SCREEN Monitor

\DOWN\DOWN\DOWN\DOWN\ENTER\ENTER

#SLEEP

Description:

#SLEEP suspends execution of the script file for a given number of milliseconds.

Syntax:

#SLEEP delay (in milliseconds)

Example:

This script mounts a volume and waits 3 minutes for the volume to be mounted.

#SCREEN System Console

mount vol1: \ENTER

#SLEEP 18000

cls\ENTER

#COORD_WIN 1 1 25 80

volumes\cr

#IF_WIN VOL1

#GOTO OK

#ELSE

#LOG Volume vol1: could not be mounted

#STOP

#ENDIF

:OK

#REM execution continues here.

#STATUS

Description:

This command displays the current value of Keyplay variables on the NetWare System Console. It is used mainly for debugging.

Syntax:

#STATUS

Example:

The #STATUS command will display a list similar to this one:

DEBUG IS ON

SWITCH IS ON

SPEED = 100

TIMEOUT_MSG = 500

TIMEOUT_WIN = 10000

TIMEOUT_SCREEN = 5000

COORD_MSG = 1 10

COORD_WIN = 1 1 25 80

LOG_FILE = C:\TMP\LOG.TXT

SCREEN = System Console

#STOP

Description:

This command is used to stop the Player daemon before the end of the script file.

Syntax:

#STOP

Example:

This script tries to load a 'XYZ.NLM'. If the nlm is not found or not loaded, the script is stopped. To check whether the nlm has been load or not, Keyplay searches for the 'not loaded' string on the System console.

#SCREEN System Console

#COORD_WIN 1 1 25 80

CLS\CR

LOAD XYZ\CR

#SLEEP 1000

#IF_WIN not loaded

#STOP

#ELSE

#CONSOLE XYZ.NLM correctly loaded!

#ENDIF

#UNTIL_MSG

Description:

#UNTIL_MSG waits forever for a string to be displayed on the current screen at the coordinates specified in '#COORD_MSG'. There is no time-out: the 'Player' daemon is suspended until the sting appears or until a user hits 's' (stop) on the NCPLUS shell screen where the keyplay command has been called.

Syntax:

#UNTIL_MSG string1

#UNTIL_MSG string1 \|| string2

Parameters:

string1, string2: Character strings to test at #COORD_MSG. Keyplay waits for string1 OR string2.
Example:

This script waits for "IPX LAN protocol" or "TCPIP LAN protocol" to be displayed on the Console second line.

#SCREEN System Console

#COORD_MSG 2 1

#UNTIL_MSG IPX LAN protocol \|| TCPIP LAN protocol

#CONSOLE Network is up and active

#UNTIL_WIN

Description:

#UNTIL_WIN waits forever for a string to be displayed on the current screen in the screen zone (window) defined in '#COORD_WIN'. There is no time-out: the 'Player' daemon is suspended until the sting appears or until a user hits 's' (stop) on the NCPLUS shell screen where the keyplay command has been called.

Syntax:

#UNTIL_WIN string1

#UNTIL_WIN string1 \|| string2

Parameters:

string1, string2: Character strings to find in #COORD_WIN. Keyplay waits for string1 OR string2.
Example:

This script waits for "Router has been reset" to appear on the System Console.

#SCREEN System Console

#COORD_WIN 1 1 25 80

#UNTIL_WIN Router has been reset

#LOG Router Re-initialized at \%TIME%

#WAIT_MSG

Description:

#WAIT_MSG waits for a string to be displayed on the current screen at the coordinates specified in '#COORD_MSG'. The string must appear before the time-out value defined in #TIMEOUT_MSG is reached, otherwise Keyplay stops on error 7.

Syntax:

#WAIT_MSG string 1

#WAIT_MSG string1 \|| string2

Parameters:

string1, string2: Character strings to wait for. (string 1 OR string 2).
Example:

This script waits 5 minutes for the strings "XYZ" or "ABC" to be displayed at row 10, column 35 of the "DBMS Server" screen.

#SCREEN DBMS Server

#COORD_MSG 10 35

#TIMEOUT_MSG 300000

#WAIT_MSG XYZ |\\ ABC

#CONSOLE XYZ or ABC is logged in DBMS!

#WAIT_SCREEN

Description:

#WAIT_SCREEN tries to change the current screen to the specified screen name. The screen must be created before the time-out value defined in #TIMEOUT_SCREEN is reached. If the screen exists already, or is created before the time-out, it will become the new Keyplay current screen. If not, Keyplay will stop on error 7.

Syntax:

#WAIT_SCREEN screen name

The screen name may be an incomplete name (i.e 'Console' instead of 'System Console', or 'Monitor' instead of 'NetWare 4.x Console Monitor Screen').

Example:

This script loads INSTALL.NLM and waits for the Install Screen to be created before switching to it.

#SCREEN System Console

LOAD INSTALL\CR

#WAIT_SCREEN Install

\DOWN\CR

#WAIT_WIN

Description:

#WAIT_MSG waits for a string to be displayed on the current screen in the screen zone (window) defined in '#COORD_WIN'. The string must appear before the time-out value defined in #TIMEOUT_WIN is reached, otherwise Keyplay stops on error 7.

Syntax:

#WAIT_MSG string 1

#WAIT_MSG string1 \|| string2

Parameters:

string1, string2: Character strings to wait for. (string 1 OR string 2).
Example:

This scripts binds IPX to a network board, and waits 30 seconds for the string "IPX LAN protocol bound to".

#SCREEN System Console

#COORD_WIN 1 1 25 80

#TIMEOUT_WIN 3000

#WAIT_WIN IPX LAN protocol bound to

#CONSOLE Network is up and active!

VIII.4. NON PRINTABLE CHARACTERS SYMBOLS.

Characters to be played back by the Player daemon are entered in the script file, along with Keyplay commands and variables. Some keyboard function keys and characters have no ASCII printable equivalent. To include such characters in a script file, special symbols must be used.

All Keyplay symbols begin with '\' (backslash). For example:

\ENTER, (or \CR), \LEFT, \BS, \F3, \ESC, \SHIFT_F1, ALT_F3, CTRL_HOME, CTRL_Z, etc. are Keyplay symbols.

Notes:

- When you want to play back the '#' and '\' characters, there must be preceded with an extra '\' character: '\\' '\#'.

- In a script file, all characters found in a line NOT beginning with '#' will be played back (sent to the keyboard buffer) unchanged, including spaces, until the end of line. If the carriage return must be played back, you must use the '\CR' or '\ENTER' symbol.

- Keyplay commands, variables and symbols can be written in lowercase or uppercase. All other characters will be played back as there are in the script file.

VIII.4.1. SPECIAL KEY SYMBOLS.

\ENTER or \CR
Enter, Carriage return

\ESC

Escape

\BS

Backspace

\TAB

Tab key

\HOME

Home key

\END

END key

\DEL

Delete key

\INS

Insert key

\UP

Up arrow key

\DOWN

Down arrow key

\LEFT

Left arrow key

\RIGHT

Right arrow key

\PGUP

Page Up key

\PGDN

Page Down key

\F1 to \F10

F1 to F10 function keys

VIII.4.2 'CTRL', 'SHIFT' and 'ALT' COMBINATIONS.

\CTRL_LEFT

\CTRL_RIGHT

\CTRL_END

\CTRL_PGDN

\CTRL_HOME

\CTRL_PGUP

\CTRL_F1 to \CTRL_F10

\CTRL_A to \CTRL_Z

\SHIFT_F1 to \SHIFT_F10

\ALT_F1 to \ALT_F10

\ALT_1 to \ALT_0

\ALT_A to \ALT_Z

VIII.5. KEYPLAY RETURN CODES.

When an error is detected by Keyplay, a message is displayed on the NetWare server 'System Console' screen. All error messages have the format:

"PLAYER Error X"

where 'X' is a number between 1 and 19. Additionally, the NCPLUS 'sysinfo' command displays the last error code returned by Keyplay (line 'Player: Last code = x'). The following list summarizes the keyplay return codes.

1. NCLK_COMMAND_NOT_FOUND:

The script file contains a line beginning with '#' containing an unknown Keyplay variable or command.

2. NCLK_BAD_EOL

The script file contains a line ending with a single '\'. Delete the '\' or write a correct symbol name.

3. NCLK_SCREEN_NOT_FOUND

The screen name specified in the #SCREEN command could not be found:

a) The screen name is misspelled.

b) The screen does not exist, or is not fully created yet. (use #WAIT_SCREEN instead of #SCREEN when switching to a screen under created by a loading nlm).

c) The screen has been destroyed (nlm unloaded).

4. NCLK_BAD_DELAY

The #SPEED argument value is invalid.

5. NCLK_BAD_TIMEOUT

The time-out value defined for #TIMEOUT_MSG or #TIMEOUT_WIN is invalid.

6. NCLK_BAD_LINECOL

The row / column values defined for #COORD_MSG or #COORD_WIN are invalid or incomplete.

7. NCLK_TIMEOUT

#WAIT_MSG, #WAIT_SCREEN or #WAIT_WIN time-out reached. The string or screen could not be found within the time-out period.

8. NCLK_BAD_SLEEP

The #SLEEP argument value is invalid.

9, 10 and 11.

Internal errors. Contact NCI.

12. NCLK_BAD_SNAPSHOT

File error while opening, writing to, or closing the hardcopy file during a "COPY command. The filename is invalid, file is already open or there is a write error.

13. NCLK_BAD_SWITCH

The #SWITCH argument is invalid. ('ON' or 'OFF' only).

14. NCLK_BAD_OPERATOR

Internal error. Contact NCI.

15. NCLK_NOT_ENOUGH_MEMORY

The script file is too big. Keyplay cannot allocate enough memory to read it.

16. NCLK_TOO_MANY_LABELS

There are too many labels defined in the script file. (max labels=128).

17. NCLK_LABEL_NOT_FOUND

The label defined after a #GOTO command does not exist.

18. NCLK_FILE_ERROR

Script file open error. The file does not exist, or is already open.

19. NCLK_TOO_MANY_SCREENS

Too many screens in the same script. Keyplay can handle a maximum of 16 different screens in one session.

IX. ACCESSING THE SERVER DOS PARTITION.

It is not recommended to access the local server DOS partition while users are working on the file server. This operation may have a strong impact on the server performances. The following NCPLUS internal commands can access the local server DOS partition:

COPY, DEL, DIR, MD, MORE, PRINT, RD, REN, TYPE and the redirection operations like '<', '>' and '>>'.

Whenever you wish to access a file or directory of the DOS partition using one of these commands, you must specify a full DOS path, including the drive letter (A: to E:) and the path from '\' (root):

DIR C:*.*
COPY A:\DIR\DIR2\TEXTE.TXT HERE
MORE C:\NWSERVER\STARTUP.NCF

NCPLUS substitution operations like '()', '[]' and the pipe '|' create temporary files on the SYS: volume. When the volume SYS: is not mounted, NCPLUS will try to create these files in the DOS partition. if DOS has been removed (NetWare REMOVE DOS command), such temporary files cannot not be created, and the NCPLUS corresponding operations will not be available.

PAGE
NCPLUS V2.00 NDS (1996 By N.C.I. All Rights Reserved - Page 33

_907485237.doc
���

 System Console

 NSH Scheduler Screen

 NSH Main Screen

[0] F:\LOGIN>

_907485238.doc
�������

NSH.NLM

NCLIB.NLM

CLIB.NLM / DSAPI.NLM

NETWARE 4.x

_907485236.doc
���������

 PID 0:

[0]F:\>BATCH <cr>

.......

....(BATCH.NCF is executed)...

......

......

......

[0]F:\>DIR *.* /S

PID 1 destroyed

PID 0 suspended

PID 1

PID 0

PID 0

_907485235.doc
����������

Simultaneously, the new PID 1 shell executes the copy command on its own screen. (User must use the ALT ESC keys to switch to the new screen).

Fig 4: Independent (background) shell example.

PID 0 shell creates a new shell to execute the copy command. The PID # of the new shell (1) is displayed. PID 0 shell is not suspended, and user may continue to enter additional commands (like DIR).

PID 1 destroyed

PID 1

 PID 1:

....(COPY command executed)...

......

......

......

 PID 0:

[0]F:\>COPY F:*.* G: /S & <cr>

01

[0]F:\>DIR *.* /S

FIC1.TXT	123

DATA.FIC	12806

TEXT.DOC	1258

PID 0

